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Trend Analysis for Climatic Data 
                                                               Naveena K 

Centre for Water Resources Development and Management (CWRDM), Kozhikode - 

673571, Kerala, India. 

Email: naveenak@cwrdm.org 

Introduction:  

Climate change is a long-term continuous change in average weather conditions either increase 

or decrease pattern. Climate variability looks at changes that occur within smaller timeframes, 

such as a month, a season or a year. Random fluctuation in climate patterns makes important 

to study both long-term and short term moments to conclude precisely about climate. During 

changing climatic scenarios, the identification of weather movements precisely is very essential 

for planning and implementation of various activities, including agricultural practices, 

cropping system, mitigation of landslides and control of flood damages. Extremities in weather 

events make a greater impact on the lives of the individuals. So, it is important to determine 

their potential long term pattern (trends) accurately.  

In order to detect trends in weather parameters, several statistical methods have been put to 

practice. The non-parametric tests like Mann-Kendal test, Modified Man Kendal test; 

innovative trend analysis are commonly using methods for trend analysis using weather 

information. Linear regression method is one of the parametric methods for trend analysis, but 

due to its predefined assumption rigidity limits the usage for long term moment analysis. 

Mann-Kendall test (MK test) 

Mann-Kendall test is the nonparametric test to detect the long-term moment in the time 

series. Test statistic for the MK test will be calculated using the sign of differences rather than 

the values of the random variables so the trend value will be least affected by nonlinearities 

compared to the parametric test like linear regression (Sanjeevaiah et al, 2021). 

The hypothesis considered under the test is: 

Null Hypothesis (H0) = There is no presence of a monotonic trend in the time series.  

Alternative Hypotheses (Ha) = There is a presence of a monotonic trend that may be decreasing 

or increasing in the time series. 

The Mann-Kendall test statistic defined by S is calculated using the formula: 
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𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

− 𝑥𝑖)           ………… . (2) 

Where 𝑥𝑗 and 𝑥𝑖 are the annual values in years j and i, j>i respectively, and n is the number of 

observations. The value of 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) is computed as follows: 

𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0

0 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

     … . . (3) 

For large samples (n>10), the test is conducted using a normal approximation with the mean 

(𝐸[𝑆])and the variance (𝑉𝑎𝑟(𝑆)) as follows: 

𝐸[𝑆] = 0 

𝑉𝑎𝑟(𝑆) =
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) −∑𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑞

𝑝=1

]      ……………(4) 

Here q is the number of tied groups, and tp is the number of data values in the pth group. The 

values of S and Var(S) are used to compute the test statistic Z as follows: 

𝑍 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 > 0

0                𝑖𝑓 𝑆 = 0 
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 < 0

            ……………(5) 

The presence of a statistically significant trend is evaluated using the Z value. The upward trend 

in the series will be indicated by a positive Z value and the downward trend by a negative Z 

value. H0 is rejected if the absolute value of Z is greater than Z1-α/2, where Z1-α/2 is obtained 

from the standard normal cumulative distribution tables. The Z values were tested at 0.05 level 

of significance. 

The monotonic relationship between lag values xi and xi+1 is measured by Kendall’s tau 

correlation coefficient (𝜏) 

𝜏 =
𝑠

𝑛(𝑛 − 1)/12
                    ………… . . (6) 
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Wallis and Moore Phase-Frequency test (WM test) 

The Wallis and Moore phase-frequency test is used to test the independency in series 

(Wallis & Moore, 1941). The hypothesis considered under the test is, 

H0: The series is random in nature, against the  

Ha: The series is nonrandom in nature. 

The test statistic in the ordered series (n>30) is 

𝑍 =
|ℎ − (

2𝑛 − 7
3 )|

√16𝑛 − 29
90

             …………………(7) 

Where h is the number of phases. If n≤30 then a correction of 0.5 is included in the 

denominator. 

Modified Man-Kendall test (MMK test) 

Even though The Mann-Kendall test is the commonly used statistical tool for testing monotonic 

trends, it assumes that observation should be free from autocorrelation. The positive 

autocorrelation in the series will mislead the trend results (Yue et al, 2002) from the MK test 

by increasing the probability of significant trend. This can be corrected by Modified Mann–

Kendall test (Yue and Wang 2004), which removes the linear trend component from the series 

and then, the effective sample size is calculated using the lag-1 serial correlation coefficient. 

The variance correction using an effective sample size will eliminate the effect of 

autocorrelation present in the time series (Sanjeevaiah et al, 2021). So, in this method variance 

of the MK test will be replaced by modified variance and the remaining procedure will proceed 

the same to identify the trend. The accuracy of the MMK test is higher than the original MK 

test with respect to the empirical significance level. 

The modified variance (V(S)*) using Effective Samples Size is given by: 

𝑉(𝑆)∗ = 𝑉(𝑆).
𝑛

𝑛∗
                  ……… . . (8) 

Where n is the Actual sample size (ASS), n/n* is the correction Factor (CF) and n* is the 

Effective Sample Size.  

The Effective Sample Size can be computed by:  
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𝑛∗ =
𝑛

1 + 2𝜌𝑘 ∑ (1 −
𝑘
𝑛)

𝑛−1
𝑘−1

         ……… (9) 

Where 𝜌𝑘  is the lag-k autocorrelation coefficient which can be estimated by sample 

autocorrelation for kth lag (𝜌𝑘). 

The MMK test was done using “modifiedmk” package of R software. 

Sen’s slope estimator 

The Sen’s nonparametric method is used to estimate the unit changes per year in the 

series. Here the trend in the series can be assumed to be linear.  

𝑓(𝑡) = 𝑄𝑡 + 𝐵                 ……… . . (10) 

Where B is a constant, t is time and Q is the slope. The slopes of all data value pairs will be 

calculated to estimate the Q using the equation: 

𝑄𝑖 =
𝑥𝑗 − 𝑥𝑘

𝑗 − 𝑘
                 ……… (11) 

Where xj and xk are data values at time j and k (j>k) respectively. If there are n values xj in the 

time series, there will be as many as N = n(n-1)/2 slope estimates Qi. The Sen’s estimator of 

slope is the median of these N values of Qi. The N values of Qi are ranked from the smallest to 

the largest and the Sen’s estimator is, 

𝑄 = 𝑄
[
(𝑁+1)

2
]
 , if N is odd or                                              ……………….(12) 

𝑄 =
1

2
(𝑄

[
𝑁

2
]
+𝑄

[
(𝑁+2)

2
]
) , if N is even.                             ………………...(13) 

Illustration for trend analysis 

Examination of spatiotemporal dynamics of rainfall pattern of Wayanad region of Kerala 

Wayanad district of Kerala is one of the high altitude and high rainfall regions of northern 

Kerala, where the majority of livelihoods depend on agricultural activities. Recent changes in 

global climate making a greater impact on the distribution of rainfall, so it’s important to 

identify potential rainfall trends accurately. For the study, we have considered two gauging 

stations like Mananthavady, and Vythiri for 33 years of annual rainfall data of all the months 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 5 - 
 

and all the seasons (South-West Monsoon; SWM (June to September), North East Monsoon; 

NEM (October to November), winter (December to February), and summer (March to May)).  

The statistical trend analysis of monthly, seasonal and annual rainfall (mm) from 1986 to 2018 

is presented in Table 1. Wald-Wolfowitz Test of randomness results indicates January (2.83), 

February (1.98), March (1.98), and April (2.41) in the Manthawadi region, January (3.26), 

February (2.40), and November (1.98) rainfall in Vettari showing Z-statistic value more than 

Z-critical value (1.96) for 5 % level of significance and indicates the significant dependency of 

the lag period. Block bootstrapping in Mann–Kendall trend test results confirms that Wayanad 

is under a downward rainfall trend in almost all the months, seasons, and annual rainfall. Where 

both the stations of the Wayanad region showing a significant downward trend for Post 

monsoon season rainfall. An average every year 14 mm post-monsoon rainfall is reducing in 

Wayanad (Mananthavady (-8.56 mm), Vythiri (-10.94 mm), and Ambalavayal (-8.50 mm)). 

Finally, when we compared the last 33-year northwest rainfall, even the number of rainy days 

(> 2.5 mm/day) in post-monsoon also taken the negative trend ((Mananthavady (Z=-1.75), and 

Vythiri (Z=-1.42)). About 63 per cent reduction in the number of rainy days was observed 

during last 10 years compared to previous past years. This has a significant effect crop 

productivity especially on the Coffee Production in the Wayanad region, as Coffee is the 

predominantly grown cash crop. Reduction in North-East monsoon increases the stress period 

of coffee crop (reduction in moisture level at the root zone), which results in early maturity of 

the crop (Awati et al, 2016). This stress along with summer showers create early flowering or 

irregular flowering in Coffee. Establishment of new clearings is difficult without the 

supplementary irrigation in case of no North-East Monsoon. Fear of Mealy bugs and sucking 

pests infestation will be more if there is a reduction in N-E monsoon. 

Table 1: Rainfall trend analysis for waynad region, Kerala 
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 WM-

test 

MK- test MMK 

test 

Sen’s 

Slope 

WM-

test 

MK- test MMK 

test 

Sen’s 

Slope 

 Mananthavady Vythiri 

Jan 2.83** -1.17 -1.29 0.00 3.26** -0.76 -0.88 0.00 

Feb 1.98* -1.19 -1.23 0.00 2.40* -1.30 -1.16 0.00 

Mar 1.98* -0.11 0.10 0.00 1.56 0.23 0.27 0.074 

Apr 2.41** -1.79 -1.84 -3.34 0.14 -1.18 -1.29 -4.92 

May 1.13 0.07 -1.78 -0.25 0.57 -0.54 -0.367 -1.38 

Jun 0.99 -0.29 -0.18 -2.9 0.99 -1.15 -0.76 -10.21 

Jul 0.70 -0.33 -0.20 -2.75 1.84 -1.00 -0.90 -11.74 

Aug 0.14 -0.29 -0.34 -2.04 0.71 -1.25 -1.08 -7.25 

Sep 0.70 0.17 0.20 0.68 0.71 -0.31 -0.30 -2.30 

Oct 1.84 -1.78 -1.67 -6.03 0.14 -1.60 -1.69 -7.72 

Nov 0.15 -1.61 -1.64 -2.49 1.98* -2.05* -2.13* -3.71 

Dec 0.70 -0.89 -0.97 -0.52 1.55 -1.56 -1.93 -3.25 

SWM 0.28 0.01 0.05 0.00 0.71 -0.45 -0.37 -11.01 

NEM 0.29 -2.06* -

1.98* 

-8.56 1.84 -2.34* -2.15* -10.94 

Winter 0.28 -1.14 -1.13 -0.96 1.56 -1.71 -2.04* -3.81 

Summer 0.28 -0.99 -1.26 -0.28 0.14 -1.25 -1.23 -0.15 

Annual 1.13 0.015 -0.01 0.01 0.71 -0.73 -0.623 -18.50 

 

Conclusion 

Recent changes in global climate making a greater impact on the distribution of weather series, 

so it’s important to identify potential trends accurately. Modified Mann–Kendall test 

outperform compare to Mann-Kendal test during the series under consideration exhibit 

significant auto correlation. 

Code for trend analysis 

##Mann-Kendall Test for Trend in R 

Data<-read.csv(file.choose(),header=TRUE) 

install.packages("trend") 

library(trend) 

#####Mann-Kendall Test 

mk.test(x, alternative = "two.sided") 

#Magnitude of trend 

#Sen's slope 

sens.slope(x) 

#Seasonal trend 

datas<-read.csv(file.choose(),header = TRUE) 

data<-ts(datas$Rainfall,start=c(1890,1),end = c(2008,12),frequency = 12) 
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smk.test(data) 

#Test for the Randomness 

##Wallis and Moore phase-frequency test 

wm.test(x) 

#Modified Mankendal test 

install.packages("modifiedmk") 

library(modifiedmk) 

#Mann-Kendall Test applied to Trend Free Pre-Whitened Time Series Data in Presence of 

Serial Correlation Using Yue and Pion (2002) Approach 

tfpwmk(x) 

#Modified Mann-Kendall Test For Serially Correlated Data Using Hamed and Rao (1998) 

Variance Correction Approach 

mmkh(x) 

 

Where x is the series under consideration for trend analysis 
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Time Series Analysis for Abiotic Stress Management 
Santosha Rathod, Naveena K, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi 

Kumar, Prabhat Kumar 

1.ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115 

2. Centre for Water Resources Development and Management (CWRDM), Kozhikode -

673571, Kerala, India. 

Email: santosha.rathod@icar.org.in 
 

 

1.  Introduction:  

Time series refers to an ordered sequence of values of a variable recorded at equally spaced 

time intervals. The process of analysing such data to extract meaningful insights is called time 

series analysis (TSA). The primary objective of time series modeling is to systematically study 

the historical behaviour of a variable to identify underlying patterns, trends, and seasonality—

so that future values can be predicted. This makes time series forecasting a powerful tool for 

decision-making, as it enables researchers and policymakers to anticipate upcoming events 

based on past trends. 

Time series analysis has been widely applied in fields like business, finance, economics, 

meteorology, hydrology, and engineering. In agriculture, and particularly in abiotic stress 

management, TSA plays a crucial role. Abiotic stresses such as drought, heat waves, cold 

spells, salinity, and floods often show periodic or trend-based behaviour over time. 

Understanding these patterns through time series forecasting allows for timely interventions, 

resource planning, and early warning systems to safeguard crops and improve resilience. For 

instance, forecasting future drought probabilities based on historical rainfall data, or predicting 

heat stress periods during crop flowering stages, are critical applications. In such cases, time 

series models such as ARIMA, SARIMA, Exponential Smoothing, and machine learning-

based models (for example, LSTM) are employed to capture both short- and long-term 

dependencies in the data. 

One of the essential properties of time series data is the dependence among successive 

observations, which distinguishes it from random or cross-sectional data. The accuracy and 

reliability of forecasts depend on both the quality and length of historical data available. 

According to Box and Jenkins pioneers of classical time series modelling minimum of 50 

observations is generally recommended for robust model development and validation. 

mailto:santosha.rathod@icar.org.in
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Thus, in the context of climate-resilient agriculture, TSA provides a scientific and data-driven 

foundation to tackle abiotic challenges by enabling forecasting, preparedness, and adaptation 

planning, ultimately contributing to more sustainable farming systems. 

A time series that records the values of a single variable is referred to as a univariate time series, whereas 

one that involves multiple variables is known as a multivariate time series. Time series data can be 

categorized as either continuous or discrete. In a continuous time series, observations are captured at 

every moment in time, while in a discrete time series, data points are collected at specific, separate time 

intervals. Examples of continuous time series include temperature measurements, river flow rates, and 

chemical concentrations. In discrete time series, observations are typically recorded at regular 

intervals—such as hourly, daily, weekly, monthly, or annually. Although the observations occur at 

discrete points, the variable itself is usually treated as continuous and measured on a real number scale. 

Additionally, a continuous time series can be converted into a discrete one by aggregating data over 

predefined time intervals. 

Time Series Analysis (TSA) generally follows two main forecasting approaches. The first 

involves predicting the present series based on the observed patterns in historical data, commonly 

referred to as the extrapolation method. The second approach, known as the explanatory method, 

estimates future outcomes by incorporating variables that influence the target phenomenon (Diebold 

and Lopez, 1996). In essence, statistical forecasting is the process of approximating the likelihood of 

future events based on available information. For example, in agriculture, farmers are generally 

interested in aspects like production, demand, consumption, and price of an item, etc., and all 

of these events, change with time. Statistical forecasting models are widely used for examining 

behavior of such time series data. So, forecasting is needed in almost all sectors viz. business 

production planning, multistage management decision analysis, staff scheduling, various 

management problems, crop yield and acreage forecasting, etc. 

One simple method of describing a series is that of classical decomposition. The 

simplest and most basic approach to forecasting is the moving averages method, which assigns 

equal weights to all observations in the selected time window. However, this method does not 

differentiate between recent and older data points. To address this limitation, exponential 

smoothing methods were introduced as an improved approach that assigns exponentially 

decreasing weights to older observations, thereby giving more importance to recent data. These 

methods were initially developed as recursive techniques without relying on any specific 

assumptions regarding the distribution of the error terms.  
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Over time, it has been observed that exponential smoothing methods are, in fact, special 

cases of the more statistically rigorous Autoregressive Integrated Moving Average (ARIMA) 

models. Among the classical time series models, ARIMA remains one of the most important 

and widely applied due to its strong theoretical foundation and practical applicability. 

The popularity of the ARIMA model is largely attributed to its linear statistical structure 

and the well-known Box-Jenkins methodology for model identification, estimation, and 

diagnostic checking (Box and Jenkins, 1970). For an extensive treatment of exponential 

smoothing techniques, the work of Makridakis et al. (1998) provides valuable insights. A 

practical guide to ARIMA modeling, including numerous case studies, is presented in Pankratz 

(1983). Furthermore, a comprehensive and rigorous exposition of ARIMA and related time 

series models is given in Box et al. (1994), which continues to serve as a foundational reference 

in time series analysis. 

2. Components of TS:  

A fundamental approach to analyzing a time series is classical decomposition, which assumes 

that the series can be broken down into four main components: trend, cyclical, seasonal, and 

irregular variations. The trend refers to the long-term direction of a series—whether it 

increases, decreases, or remains stable over time. For instance, population growth or housing 

development in a city typically exhibits an upward trend, while mortality rates or epidemic 

cases may show a downward trend. Seasonal variations are short-term, recurring fluctuations 

that occur within a year, often driven by climate, weather, cultural customs, or traditions—such 

as increased ice cream sales in summer or higher demand for woolen clothes in winter. 

Understanding these patterns is essential for businesses, retailers, and producers to plan 

effectively. Cyclical variations represent medium-term movements that repeat over extended 

periods, often spanning two or more years. These are commonly observed in economic and 

financial time series, such as the phases of the business cycle: prosperity, decline, depression, 

and recovery. In contrast, irregular or random variations are unpredictable and non-repeating 

disturbances caused by unforeseen events like wars, strikes, natural disasters, or political 

upheavals. Since these fluctuations do not follow any specific pattern, there is no standard 

statistical method to measure them. To account for the combined effects of these four 

components, time series models are typically structured using either multiplicative or additive 

forms 
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Multiplicative model: 𝑌(𝑡) = 𝑇(𝑡) ∗ 𝑆(𝑡) ∗ 𝐶(𝑡) ∗ 𝐼(𝑡) 

Additive model: 𝑌(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝐶(𝑡) + 𝐼(𝑡) 

Where, Y(t) is the original series, T(t) is the trend component, S(t) is the seasonal component, 

C(t) is the cyclic component and I(t) is the irregular component. The multiplicative model of a 

time series is based on the assumption that the four components—trend, cyclical, seasonal, and 

irregular—are not necessarily independent and can influence one another. In contrast, the 

additive model assumes that these components are independent and do not affect each other 

directly. 

2.1 Trend analysis 

The trend analysis was done in three steps. The first step is to detect the presence of increasing 

or decreasing trend using the nonparametric Mann-Kendall test, second step is estimation of 

magnitude or slope of a linear trend with the nonparametric Sen’s Slope estimator, and third 

one is to develop regression models.  

Calculation of the Mann-Kendal test 

The Mann-Kendall test statistic S is calculated using the formula that follows: 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

− 𝑥𝑖) 

Where 𝑥𝑗 and 𝑥𝑖 are the annual values in years j and i, j>i respectively, and N is the number of 

data points. The value of 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) is computed as follows: 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0

0 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

 

 

This statistic represents the number of positive differences minus the number of negative 

differences for all the differences considered. For large samples (N>10), the test is conducted 

using a normal approximation (Z statistics) with the mean and the variance as follows: 
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𝐸[𝑆] = 0 

𝑉𝑎𝑟(𝑆) =
1

18
[𝑁(𝑁 − 1)(2𝑁 + 5) −∑𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑞

𝑝=1

] 

Here q is the number of tied (zero difference between compared values) groups, and tp is the 

number of data values in the pth group. The values of S and VAR(S) are used to compute the 

test statistic Z as follows 

𝑍 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 > 0

0                𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 < 0

 

The presence of a statistically significant trend is evaluated using the Z value. A positive value 

of Z indicates an upward trend and its negative value a downward trend. The statistic Z has a 

normal distribution. To test for either an upward or downward monotone trend (a two-tailed 

test) at α level of significance, H0 is rejected if the absolute value of Z is greater than Z1-α/2, 

where Z1-α/2 is obtained from the standard normal cumulative distribution tables. The Z values 

were tested at 0.05 level of significance. 

Sen’s slope estimator 

To estimate the true slope of an existing trend (as change per year) the Sen's nonparametric 

method is used. The Sen’s method can be used in cases where the trend can be assumed to be 

linear.  

𝑓(𝑡) = 𝑄𝑡 + 𝐵 

Where Q is the slope, B is a constant and t is time. To get the slope estimate Q, the slopes of 

all data value pairs is first calculated using the equation: 

𝑄𝑖 =
𝑥𝑗 − 𝑥𝑘

𝑗 − 𝑘
 

Where xj and xk are data values at time j and k (j>k) respectively. If there are n values xj in the 

time series there will be as many as N = n(n-1)/2 slope estimates Qi. The Sen’s estimator of 

slope is the median of these N values of Qi. The N values of Qi are ranked from the smallest to 

the largest and the Sen’s estimator is 
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𝑄 = 𝑄
[
(𝑁+1)

2
]
 , if N is odd or  𝑄 =

1

2
(𝑄

[
𝑁

2
]
+ 𝑄

[
(𝑁+2)

2
]
) , if N is even. 

To obtain an estimate of B in Equation f(t) the n values of differences xi – Qti are calculated. 

The median of these values gives an estimate of B. 

Modified Mann–Kendall test 

the Mann-Kendall test is the commonly using statistical tools for testing monotonic upward or 

downward trend of the variable of interest over time. The positive auto correlation in the series 

will miss lead the trend results (Yue et al, 2004) from Mann-Kendal test. Mann-Kendall test 

show significance results even though no trend in the series. The null hypothesis H0: there has 

been no trend in given series was tested against there has been a trend in given series. the 

hypothesis where were no trend, was rejected when the computed Z-transformed test Statistic 

value was greater in absolute value than the critical value Z1-0.5α, at 95% level of significance.  

Illustration: Trend analysis 

The Manthawadi, station of waynad (11.8014°N, 76.0044°E) district considered for the study. 

The daily rainfall data for the period 1987-2018 (33 years) is collected from India 

Meteorological Department, Pune. The methods adopted to study the characteristics of rainfall 

in this region are as follows: Mann–Kendall trend test (MK-test), Wald-Wolfowitz Test of 

randomness (WWTR), Sen’s slope estimator and Block bootstrapping in Mann–Kendall trend 

test (BBMK). 

Results 

The statistical trend analysis of monthly, seasonal and annual rainfall (mm) from 1986 to 2018 

is presented in Table 1. The data of the 12 months were combined into four seasons, south-

west monsoon (June to September), northeast monsoon (October to November), winter 

(December to February), and summer (March to May). Wald-Wolfowitz Test of randomness 

results indicates January (2.83), February (1.98), March (1.98), and April (2.41) in the 

Manthawadi region showing Z-statistic value more than Z-critical value (1.96) for 5 % level of 

significance and indicates the significant dependency of the lag period. Block bootstrapping in 

Mann–Kendall trend test results confirms that Wayanad is under a downward rainfall trend in 

almost all the months, seasons, and annual rainfall.  
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Table 1: Trend analysis of Manthawadi region 

 
Randomness test MK- test BBMK 

test 

Sen’s 

Slope 

 Mananthavadi 

Jan 2.83** -1.17 -1.29 0.00 

Feb 1.98* -1.19 -1.23 0.00 

Mar 1.98* -0.11 0.10 0.00 

Apr 2.41** -1.79 -1.84 -3.34 

May 1.13 0.07 -1.78 -0.25 

Jun 0.99 -0.29 -0.18 -2.9 

Jul 0.70 -0.33 -0.20 -2.75 

Aug 0.14 -0.29 -0.34 -2.04 

Sep 0.70 0.17 0.20 0.68 

Oct 1.84 -1.78 -1.67 -6.03 

Nov 0.15 -1.61 -1.64 -2.49 

Dec 0.70 -0.89 -0.97 -0.52 

Annual 1.13 0.015 -0.01 0.01 

SW-Monsoon 0.28 0.01 0.05 0.00 

Post-monsoon 0.29 -2.06* -1.98* -8.56 

Winter 0.28 -1.14 -1.13 -0.96 

Pre-monsoon 0.28 -0.99 -1.26 -0.28 

 

Code for trend analysis 

##Mann-Kendall Test for Trend in R 

Data<-read.csv(file.choose(),header=TRUE) 

install.packages("trend") 

library(trend) 

#####Mann-Kendall Test 

mk.test(x, alternative = "two.sided") 

#Magnitude of trend 

#Sen's slope 

sens.slope(x) 

#Seasonal trend 

datas<-read.csv(file.choose(),header = TRUE) 

data<-ts(datas$Rainfall,start=c(1890,1),end = c(2008,12),frequency = 12) 

smk.test(data) 

#Test for the Randomness 
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##Wallis and Moore phase-frequency test 

wm.test(x) 

#Modified Mankendal test 

install.packages("modifiedmk") 

library(modifiedmk) 

#Mann-Kendall Test applied to Trend Free Pre-Whitened Time Series Data in Presence of 

Serial Correlation Using Yue and Pion (2002) Approach 

tfpwmk(x) 

#Modified Mann-Kendall Test For Serially Correlated Data Using Hamed and Rao (1998) 

Variance Correction Approach 

mmkh(x) 

Change-point detection 

#Pettitt's test 

pettitt.test(x) 

##Buishand Range Test 

br.test(x) 

#Buishand U Test 

bu.test(x) 

#Standard Normal Homogeinity Test 

snh.test(x) 

 

3. Moving averages and Exponential smoothing methods 

3.1. Moving Average (MA) 

3.1.1. Single Moving averages: Moving average is a numerical average of last N data points. 

In general the MA is defined as follows; 

𝑀𝑡
[1] =

𝑌𝑡 + 𝑌𝑡−1 +⋯+ 𝑌𝑡−𝑁+1
𝑁

 

Where, Yt is the observed time series at time t, At each successive time period the most recent 

observation is included and the farthest observation is excluded for computing the average. 

Hence the name ‘moving’ averages.   

3.1.2: Double moving averages 

The simple moving average is intended for data of constant and no trend nature. If the data 

have a linear or quadratic trend, the simple moving average will be misleading. In order to 

correct for the bias and develop an improved forecasting equation, the double moving average 

can be calculated. To calculate this, simply treat the single moving average time as individual 

data points and obtain a moving average of these averages. 
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3.2. Exponential Smoothing methods 

3.2.1: Simple exponential smoothing (SES) 

Simple exponential smoothing (Brown 1959) is best applied to time series that do not exhibit 

trend and do not exhibit seasonality. Its only smoothing parameter is α. The smoothing 

parameter α is used to control the speed which the updated forecast will adapt to local level (or 

mean) of the time series. This is also known as single exponential smoothing. It is used for 

short-range forecasting. The model assumes that the data fluctuates around a reasonably stable 

mean (no trend or consistent pattern of growth).  

𝐹𝑡+1 = 𝐹𝑡 + 𝛼(𝑌𝑡 − 𝐹𝑡)  

𝐹𝑡+1 is the forecast of current period, based on forecast of most recent period 𝐹𝑡 and smoothing 

constant 𝛼. We have to choose the smoothing constant 𝛼 in such a way that the model should 

yield the lowest MSE value.  

3.2.2: Double Exponential Smoothing (Holt) 

It is best applied to time series that have a linear trend but does not exhibit seasonal behavior. 

The smoothing constant α is used to control speed of adaptation to local level and a second 

smoothing constant β is introduced to control degree of local trend carried through to multi-

step-ahead forecast periods. Holt's model is more general than Brown's model because its 

smoothing parameters (level and trend) are not constrained by each other's values as in case 

with Brown's One-parameter Linear Trend Method. It is also known as Holt’s Exponential 

smoothing with Additive Trend.  

3.2.3: Triple Exponential Smoothing (Winters) 

The method under consideration is particularly recommended when the time series data 

exhibits seasonality. It is built upon three core smoothing equations—one each for the level, 

the trend, and the seasonal component. While it closely resembles Holt’s method, it introduces 

an additional equation to explicitly handle the seasonal variation. In fact, there exist two 

versions of Winter’s method, depending on the form of seasonality being modeled: the additive 

version for constant seasonal fluctuations and the multiplicative version for seasonality that 

varies with the level of the series. 

4. Stationarity process of TS:  
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A fundamental aspect of time series analysis is to assess whether the data is stationary. A time 

series is considered stationary when its statistical properties—such as the mean, variance, and 

auto-covariance at various lags—remain constant over time, regardless of the specific time 

point under consideration (Fig. 1). Stationarity ensures that the model's parameters remain 

stable and reliable for forecasting. 

 

Figure 1: Sample path of a stationary process 

Moreover, the time series {rt} is said to be strictly stationary if the joint distribution of rt1 ,..., 

rtk is identical to that of rt1-s ,..., rtk-s for all choice of t1, t2,., tk and all choice of time lag s. 

In other words, strict stationarity requires that the joint distribution of rt1 ,..., rtk is constant 

under time shift. A weaker version of stationarity is often assumed. A time series {rt} is weakly 

stationary if both the mean of rt and the covariance between rt and rt−s are time-invariant, 

where s is an arbitrary integer. More specifically, {rt} is weakly stationary if: 

1) E(rt ) = µ, which is a constant , for all t . 

2) Cov(rt , rt−s) = γs, which only depends on all time t and lag s . 

A time series is said to exhibits non-stationarity if the underlying generating process does not 

have a constant mean and/or a constant variance.  As an example, the series given below 

displays considerable variation, especially since 2001, and a stationary model does not seem to 

be reasonable (Fig. 2).  
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Figure 2: Sample path of a non-stationary process 

A statistical test for stationarity is the most widely used Dickey Fuller test. To carry out the 

test, estimate by OLS the regression model. If the AR parameter is nearly zero the original 

series needs differencing and if AR parameter is less than zero then series is said to be already 

stationary.  

5. Autocorrelation Function (ACF) 

One of the most essential tools for analyzing dependence in a time series is the sample 

autocorrelation function. The correlation coefficient between two random variables, X and Y, 

indicates the strength of their linear relationship and always lies between -1 and 1. When a time 

series is assumed to be stationary, the autocorrelation function pk for various lags k=1,2,…can 

be estimated by calculating the sample correlation between observations that are k time units 

apart. Specifically, the correlation between  𝑌𝑡−𝑘  and 𝑌𝑡−𝑘   is referred to as the lag-k 

autocorrelation or serial correlation coefficient, and under the assumption of weak stationarity, 

it is defined as follows:  
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Since k  is a correlation, it has the simple properties: 

a) -1 ≤ k  ≤ 1 

b) k  = k−  

c) 0  = 1 

5.1. Partial Autocorrelation Function (PACF) 

Partial autocorrelations are used to measure the degree of association between Yt and Yt-k when 

the y-effects at other time lags 1,2,3,…,k-1 are removed. 

6. Autoregressive (AR) Model 
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An observed time series 𝑌𝑡  can be elucidate by linear function of its previous 

observation,  𝑌𝑡−1 and some unexplainable random error 𝜀𝑡.   Let us consider equally spaced 

time series 𝑌𝑡, 𝑌𝑡−1, 𝑌𝑡−2 …, over an equal period of time say t, t-1, t-2, …, then 𝑌𝑡 can be 

defined as; 

 𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 +⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝜀𝑡      

If we represent the series in Backshift operator format, then it becomes 

 ∅(𝐵) = 1 − ∅1(𝐵) − ∅2𝐵
2 −⋯− ∅𝑝𝐵

𝑝      

Where, B is the backshift 𝐵𝑌𝑡 = 𝑌𝑡−1 then the AR model can be written as ∅(𝐵)𝑌𝑡 = 𝜀𝑡.  

6.1. Moving Average (MA) Model 

Another important model of great practical utility in the frame work of time series is finite 

moving average model.  The MA (q) model is defined as; 

 𝑌𝑡 = 𝜀𝑡−𝜃1𝜀𝑡−1−𝜃2𝜀𝑡−2 −⋯−𝜃𝑞𝜀𝑡−𝑞    

In terms of backshift operator, the MA model of order q is given as follows;  

 𝜃(𝐵) = 1 − 𝜃1(𝐵) − 𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞    

Where B is the backshift operator and the moving average model can be expresses as; 

  𝑌𝑡 = 𝜃(𝐵)𝜀𝑡 

6.2. Autoregressive Moving Average (ARMA) model 

In order to obtain the higher efficiency and greater flexibility in modeling we combine 

both autoregressive and moving average processes together. These models are called as "mixed 

models" and are represented as ARMA (p,q) models 

 𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 +⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝜀𝑡−𝜃1𝜀𝑡−1−𝜃2𝜀𝑡−2 −⋯−𝜃𝑞𝜀𝑡−𝑞     

 Generally, in Backshift operator it is expressed as follows; 

 ∅(𝐵)𝑌𝑡 = 𝜃(𝐵)𝜀𝑡       

6.3. Autoregressive Integrated Moving Average (ARIMA) model 

ARIMA is one of the most established methods for analyzing non-stationary time 

series. Unlike regression models, ARIMA explains a time series using its own past (lagged) 

values and random error terms. These models are often referred to as mixed models because 

they combine both autoregressive (AR) and moving average (MA) components. Although 
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mixed models can make the forecasting process more complex, they generally offer more 

accurate predictions. In contrast, pure models consist solely of either AR or MA components, 

but not both. The integrated (I) part of ARIMA refers to the differencing process used to 

convert a non-stationary series into a stationary one, enabling forecasting. An ARIMA model 

is typically denoted as ARIMA(p, d, q) and is expressed in the following form:  

 ∅(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡      

 𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 +⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝜀𝑡−𝜃1𝜀𝑡−1−𝜃2𝜀𝑡−2 −⋯−𝜃𝑞𝜀𝑡−𝑞   

𝑌𝑡 is the time series, ∅𝑖and θj are model parameters,   𝜀𝑡   is random error, p is number of 

autoregressive terms, q is number of moving terms and B is the backshift operator such that, 

𝐵𝑌𝑡 = 𝑌𝑡−1 (Box and Jenkins 1994, Brockwell and Davis 1996).  

The main stages in setting up a Box-Jenkins forecasting models are described below: 

6.3.1. Identification:  

The initial and most crucial step in time series modeling is to check whether the series 

is stationary, as most estimation techniques are valid only for stationary data. If the series is 

found to be non-stationary, it must first be transformed into a stationary form. Once stationarity 

is achieved, the next step is to identify initial estimates for the orders of seasonal and non-

seasonal parameters—namely, p, q for non-seasonal and P, Q for seasonal components. These 

initial values can be suggested by examining the significance of autocorrelation and partial 

autocorrelation coefficients. For instance, if the second-order autocorrelation is significant, an 

AR(2), MA(2), or ARMA(2) model might be considered as a starting point. However, this is 

not a strict rule, since sample autocorrelations can be unreliable approximations of their 

population counterparts. Despite this, they serve as useful starting estimates, with the final 

model determined through an iterative process. The estimated ACF (Autocorrelation Function) 

and PACF (Partial Autocorrelation Function) provide a straightforward way to explore 

statistical relationships within the data, helping to identify underlying patterns and 

dependencies. This relationship is captured mathematically through an equation. The 

fundamental idea behind this technique is that every stochastic process operating over time has 

its own characteristic Autocorrelation Function (ACF) and Partial Autocorrelation Function 
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(PACF). Since any observed time series is considered a specific realization of an underlying 

stochastic process, its theoretical ACF and PACF should closely resemble the estimated ACF 

and PACF derived from the actual data. 

 

6.3.2. Estimation of parameters 

During the estimation stage of time series modeling, the parameters of the identified 

model are computed. Typically, the method of least squares is employed, which minimizes the 

sum of squared residuals to determine the best-fitting coefficients. At this stage, it is also 

essential to verify the stationarity and invertibility of the model based on the estimated 

parameters. Additionally, model adequacy is assessed to ensure that the selected model fits the 

data well. The significance of each estimated coefficient is evaluated through statistical testing, 

as each has a sampling distribution and an associated standard error. Most ARIMA estimation 

procedures include automatic hypothesis testing to determine whether a coefficient is 

significantly different from zero. However, when coefficients are highly correlated, the 

resulting parameter estimates may be unreliable. To assess the quality of the model fit, 

performance metrics such as Root Mean Square Error (RMSE), Mean Absolute Percentage 

Error (MAPE), and others are calculated.  

6.3.3. Diagnostic checking  

Different models can be obtained for various combinations of AR and MA individually 

and collectively. The best model is obtained with following diagnostics. 

(a)  Low Akaike Information Criteria (AIC)/ Bayesian Information Criteria 

(BIC)/Schwarz-Bayesian Information Criteria (SBC) 

AIC is given by (-2 log L + 2 m) where m=p+ q+ P+ Q and L is the likelihood function. 

Since -2 log L is approximately equal to {n (1+log 2π) + n log σ2} where σ2 is the model MSE, 
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Thus AIC can be written as AIC={n (1+log 2π) + n log σ2 + 2 m} and because first term in this 

equation is a constant, it is usually omitted while comparing between models. As an alternative 

to AIC, sometimes SBC is also used which is given by SBC = log σ2 + (m log n)/n. 

(b)  Plot of residual ACF 

After fitting a suitable ARIMA model, the goodness of fit can be assessed by examining 

the autocorrelation function (ACF) of the model’s residuals. If the majority of the residual 

autocorrelation coefficients fall within the range of ±1.96/√N—where N is the total number of 

observations used in the model—it suggests that the residuals behave like white noise. This 

indicates that the model has effectively captured the structure of the data and is considered a 

good fit.  

(c)  Non-significance of auto correlations of residuals via Portmonteau tests (Q-tests 

based on Chi-square statistics)-Box-Pierce or Ljung-Box texts 

Once a tentative model has been applied to the data, it is essential to carry out diagnostic 

checks to evaluate the model’s adequacy and identify any areas for potential improvement. A 

common approach to this is by analyzing the residuals of the model. One effective method for 

assessing the overall fit is through the use of the Box-Pierce statistic (Q), which is based on the 

autocorrelations of the residuals. This statistic approximately follows a Chi-square distribution 

and provides a quantitative measure to determine how well the model captures the underlying 

structure of the data. It is calculated using the following formula:  

Q=n ∑ r2
 (j)         

In this context, the summation runs from 1 to k, where k is the maximum lag 

considered—typically chosen around 20—and n is the number of observations in the time 

series. The term r(j) represents the estimated autocorrelation at lag j. The Box-Pierce Q statistic 

follows a Chi-square distribution with (k − m − 1) degrees of freedom, where m is the number 

of parameters estimated in the model. A refined version of this test is the Ljung–Box statistic, 

calculated as:  

q= n (n+2) ∑ r2
 (j)/ (n-j)                                          
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This Q statistic is then compared with critical values from the Chi-square distribution. 

If the model is correctly specified, the residuals should exhibit no autocorrelation, resulting in 

a small Q value and a large associated p-value. Conversely, a significant Q value suggests that 

the residuals are not white noise, indicating that the model may not adequately fit the data.  

7. Forecasting 

The final model is used to generate predictions about the future values and then calculate the 

errors for the values obtained by developed model. 

8. Illustration: To build the ARIMA Model 

Yearly data on total oilseed production (in million tonnes) in India from 1950–51 to 2015–16 

were obtained from the agricultural statistics published by the Reserve Bank of India (RBI), 

Government of India (RBI Statistics, 2016). Data from 1950–51 to 2010–11 were used for 

model development, while the data from 2011–12 to 2015–16 were utilized for validating the 

forecasting performance of the models. The summary statistics and time series plot 

corresponding to the dataset are presented in Table 2 and Figure 3, respectively. 

 

Fig.3: Time series plot of Oilseed production of India 

 

 

 

The ARIMA model has been built for oilseed production of India. The original time series was 

found to be non-stationary, so first differencing was done to make the stationary series time 

series (Figure 4).  
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Fig. 4.  ACF and PACF time series Oilseed production of India 

 

The selected model, ARIMA(1,1,0), was determined to be appropriate based on the analysis of 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots (Figure 3). 

A residual autocorrelation check for the fitted ARIMA model applied to the mango production 

time series revealed that the residuals were non-autocorrelated, as indicated by a Chi-square 

test p-value of 0.45, confirming the adequacy of the model.  

 
R code for ARIMA model 

library(forecast) 

library(tseries) 

ye=read.table(file="clipboard",header=TRUE) ## import the data 
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ye.ts <- ts(ye, start=1890, end=2008, frequency=1) ## define into time series frame work 

plot.ts(ye.ts, col='blue', pch=2, lwd=3) ##plot the series 

acf(ye.ts,lag.max = 40,col='red', pch=2, lwd=3) ## plot acf and pacf 

pacf(ye.ts,lag.max = 40,col='red', pch=2, lwd=3) 

stationarity=adf.test(ye.ts) ## check for stationarity 

stationarity  

ye.training=ye.ts[1:100]  ## devide the data into training and testing set 

ye.testing=ye.ts[101:119] 

arima1=arima(ye.training, order=c(1,0,1),include.mean = TRUE) ## ARIMA fitting 

arima1 

arima1=arima(ye.training, order=c(1,0,1),include.mean = TRUE) ## 

## install the package forecast 

ye.fit=auto.arima(ye.training) ## auto fitting 

ye.fit 

res=arima1$residuals 

res_test=Box.test(res, lag = 1, type = c("Box-Pierce", "Ljung-Box"), fitdf = 0) ##diangnostic 

checking 

res_test  

accuracy(arima1)  

fcast=forecast(arima1, h=19) 

fcast 

fitted.test1=data.frame(fcast) ##forecast the out of sample 

fitted.test=fitted.test1[,1] 

DMwR::regr.eval(ye.testing, fitted.test) 

9. Suggested Readings 

Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. (1994). Time series analysis: Forecasting and 

control, Pearson Education, Delhi. 

Makridakis, S., Wheelwright, S.C. and Hyndman, R.J. (1998). Forecasting: Methods and 

Applications, John Wiley, New York. 

Pankratz, A. (1983). Forecasting with univariate Box – Jenkins models: concepts and cases, 

New york: John Wiley & Sins. 

Chris Chatfield, C. (2003). The Analysis of Time Series: An Introduction, Sixth Edition. 

Chapman & Hall/CRC Texts in Statistical Science. 
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ARCH Family of Models 

Achal Lama1*, K N Singh1 and Bishal Gurung2 

1ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012 
2North-Eastern Hill University, Shillong-793022 

Email: achallama.iasri@icar.org.in 

1. Introduction  

Time series analysis involves studying observations that are recorded sequentially over time, 

where the temporal order is essential, making time series data inherently dependent. These 

observations can be gathered at various frequencies such as hourly, daily, weekly, monthly, or 

annually, depending on the nature of the application. A time series is typically represented 

using notations like {Xt} or {Yt}, where t = 1, 2, ..., T represents the time index for a series of 

length T. In statistical terms, a time series is treated as a realization from an underlying 

stochastic process, and efforts are directed toward understanding the probabilistic law 

governing such processes. This understanding facilitates insight into the dynamics of the series, 

enables forecasting of future values, and helps guide interventions aimed at influencing future 

behavior. 

Given the finite nature of observed data, multiple stochastic processes can theoretically explain 

the same dataset. However, only a subset of these processes are both statistically plausible and 

meaningfully interpretable. Therefore, to make inference tractable, one typically imposes 

structural assumptions by selecting a suitable family of probability models. This step is called 

modelling, while the selection of the most appropriate model within that family and estimation 

of its parameters is referred to as statistical inference. When the model structure is fully 

specified except for a finite set of parameters, it is termed a parametric model. In contrast, 

nonparametric models allow for greater flexibility, where the model form may not be 

completely specified or may involve parameters from an infinite-dimensional space. 

Effective time series analysis hinges on selecting appropriate statistical models that balance 

interpretability, simplicity, and feasibility. A good model should adequately reflect the 

underlying physical law governing the data without being overly complex. The chosen model 

family should be broad enough to include the true data-generating process but not so broad that 

parameter estimation becomes unreliable. During the modelling process, it is important first to 

identify key features and patterns in the data and then select a model that captures those 

characteristics. Once parameters are estimated, the adequacy of the model fit must be verified, 

and refinements may be made if necessary. It is also important to note that model suitability 

depends heavily on the goal of the analysis—for example, a model that provides a good fit and 

interpretation may not necessarily be ideal for forecasting purposes. 

This write-up aims to provide a foundational understanding of time series analysis. It offers an 

overview of both linear and nonlinear time series models, with a focus on those within the 

ARMA framework. It also covers commonly used parametric nonlinear models such as the 

mailto:achallama.iasri@icar.org.in
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Autoregressive Conditional Heteroscedastic (ARCH) model and its generalized form, 

GARCH. For a more comprehensive treatment of these models, readers may refer to Fan and 

Yao (2003). Finally, this document includes R code examples using real datasets to 

demonstrate the application and interpretation of both linear and nonlinear time series models 

for improved understanding and practical use. 

2. Linear Time Series Models 

The most widely used class of linear time series models is the Autoregressive Moving Average 

(ARMA) family, which encompasses both the purely Autoregressive (AR) and Moving 

Average (MA) models as special cases. These models are extensively applied to represent 

linear dynamic behavior in time series data, as they effectively capture the linear relationships 

among lagged observations. ARMA models provide a robust framework for analyzing and 

forecasting time-dependent phenomena by incorporating past values and past errors. A 

particularly important extension of ARMA models is the Autoregressive Integrated Moving 

Average (ARIMA) model. ARIMA models generalize ARMA processes to handle non-

stationary data by incorporating a differencing component, thereby making them especially 

useful in practical applications where time series often exhibit trends or other forms of non-

stationarity. The ARIMA class includes stationary ARMA processes as a subset and is widely 

adopted for its versatility and forecasting power. We have tried to briefly introduce these linear 

models in the subsequent sub-sections. 

2.1 Autoregressive (AR) Model 

A stochastic model that can be extremely useful in the representation of certain practically 

occurring series is the autoregressive model. In this model, current value of the process is 

expressed as a finite, linear aggregate of previous values of the process and a shock t . Let us 

denote the values of a process at equally spaced time epochs , 1, 2,...t t t− −  by
1 2, , ,...t t ty y y− −

 

then ty can be described as 

1 1 2 2t t t p t p ty y y y   − − −= + + + +  

If we define an autoregressive operator of order p by 

( ) 2

1 21 p

pB B B B   = − − − −  

where B is the backshift operator such that Byt = yt−1 , autoregressive model can be written as 

(B) yt = t . 

2.2 Moving Average (MA) Model 

Another kind of model of great practical importance in the representation of observed time-

series is finite moving average process. MA (q) model is defined as 

1 1 2 2t t t t q t qy       − − −= − − − −  
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If we define a moving average operator of order q by 

( ) 2

1 21 q

qB B B B   = − − − −
 

where B is the backshift operator such that Byt = yt−1 , moving average model can be written 

as yt = (B)t . 

 

2.3 Autoregressive Moving Average (ARMA) Model 

 

To achieve greater flexibility in fitting of actual time-series data, it is sometimes advantageous 

to include both autoregressive and moving average processes. This leads to mixed 

autoregressive-moving average model 

1 1 2 2 1 1 2 2t t t p t p t t t q t qy y y y         − − − − − −= + + + + − − −
 

or 

(B) yt  = (B)t 

and is written as ARMA(p, q). In practice, it is quite often adequate representation of actually 

occurring stationary time-series can be obtained with autoregressive, moving average, or mixed 

models, in which p and q are not greater than 2. 

2.4 Autoregressive Integrated Moving Average (ARIMA) Model 

A generalization of ARMA models which incorporates a wide class of non-stationary time-

series is obtained by introducing the differencing into the model. The simplest example of a 

non-stationary process which reduces to a stationary one after differencing is Random Walk. 

A process { yt } is said to follow an Integrated ARMA model, denoted by ARIMA (p, d, q), if 

d yt = (1 − B)d t is ARMA (p, q). The model is written as 

( )( ) ( )1
d

t tB B y B  − =
 

t  
are assumed to be independently and identically distributed with a mean zero and a constant 

variance of 2 .  

3. Non-linear models: ARCH and GARCH models 

After the dominance of the ARIMA model for over two decades, the need of such model was 

felt which could predict with varying variance of the error term. The solution was provided by 

Engle (1982) when he developed ARCH model to estimate the mean and variance of the United 

Kingdom inflation. This model has few interesting characteristics; it models the conditional 
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variance as the square of the function of the previous error term and assumes the unconditional 

variance to be constant. Along with the ARCH models can model heavy tail data which are 

common in financial market. Besides these, Bera and Higgins (1993) pointed out that ARCH 

models are easy and simple to handle, can take care of clustered errors, non-linearity and 

importantly takes care of changes in the econometrician’s ability to forecast. 

The ARCH (q) model for the series  is defined by specifying the conditional distribution 

of   given the information available up to time t −1. Let   denote this information. ARCH (q) 

model for the series   is given by 

                         ( )t1tt 0,hN~|ψε −  
                         

=

−+=
q

i

itit aah
1

2

0                                                      

where, 0a0  , 0ai   , for all i and 
=


q

1i

i 1a    are required to be satisfied to ensure non-

negativity and finite unconditional variance of stationary   series.  Bollerslev (1986) and 

Taylor (1986) proposed the Generalized ARCH (GARCH) model independently of each other, 

in which conditional variance is also a linear function of its own lags and has the following 

form 

                                                               
2/1

ttt h =
                                                (1)

 

where  t  ~ N (0,1). A sufficient condition for the conditional variance to be positive is  

p,...2,1,j0,bq.,...2,1,i0,a0,a ji0 ==  

The GARCH (p, q) process is weakly stationary if and only if 

. 1ba
p

1j

j

q

1i

i +
==

 

The conditional variance defined by (1) has the property that the unconditional autocorrelation 

function of 2

t  ; if it exists, can decay slowly. For the ARCH family, the decay rate is too rapid 

compared to what is typically observed in financial time-series, unless the maximum lag q is 

long. As (1) is a more parsimonious model of the conditional variance than a high-order ARCH 

model, most users prefer it to the simpler ARCH alternative. The most popular GARCH model 

in applications is the GARCH (1,1) model. 

Step 1: Determine whether the time series is stationary. 

 t

 t
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Before applying any time series model, it is essential to ensure that the series under analysis is 

stationary. A stationary time series is characterized by constant statistical properties over time, 

such as mean, variance, and autocorrelation structure. Stationarity implies that the underlying 

process generating the data does not change with time, which is a fundamental assumption for 

many time series models, including ARIMA. 

Preliminary detection of stationarity can be done visually by plotting the raw data, as well as 

examining the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

plots. However, to statistically verify the presence of stationarity, formal tests such as the 

Dickey-Fuller test, Augmented Dickey-Fuller (ADF) test, Phillips-Perron test, and the KPSS 

test (developed by Kwiatkowski, Phillips, Schmidt, and Shin) are widely employed. These tests 

help determine whether differencing or other transformations are needed to make the series 

stationary before modeling.  

Step 2: Identify the model. 

Once the time series has been rendered stationary, the next step involves identifying an 

appropriate mean model, typically using the Autoregressive Integrated Moving Average 

(ARIMA) framework. The ARIMA model, denoted as ARIMA(p, d, q), is specified by 

determining three key parameters: 

• p, the order of the autoregressive (AR) component, 

• d, the order of differencing required to achieve stationarity, and 

• q, the order of the moving average (MA) component. 

The values of p and q are selected based on the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) plots of the stationary series. Specifically, the PACF plot is 

used to identify the order of the AR term (p), while the ACF plot helps in identifying the order 

of the MA term (q). The parameter d reflects the number of differencing operations applied to 

the original series to induce stationarity.  

Step 3: Estimate the model parameters and diagnostic checking. 

Once a few tentative models have been identified, the estimation of model parameters is carried 

out using standard statistical procedures. Typically, the Maximum Likelihood Estimation 

(MLE) method is employed, which estimates parameters by maximizing the likelihood 

function or, equivalently, by minimizing an overall measure of forecast errors. This stage 

primarily aims to assess whether the assumptions made regarding the error structure of the 

model are satisfied. To validate this, diagnostic checking is performed, most commonly using 
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the Portmanteau test (such as the Box–Pierce or Ljung–Box test). This test examines whether 

the residuals from the fitted model behave like white noise—that is, they are uncorrelated and 

have a constant variance over time. The null hypothesis for the test states that the residuals 

constitute white noise, and rejecting it would indicate that the model may be inadequate and 

require re-specification.  

 The Ljung-Box statistic is given by: 

1 2

1

( 2) ( )
h

k

k

Q n n n k r−

=

= + −  

where, h is the maximum lag, n is the number of observations, k is the number of parameters 

in the model. If the data are white noise, the Ljung-Box Q statistics has a chi-square distribution 

with (h-k) degrees of freedom.  

Step 4: Select the most suitable ARIMA model 

The most suitable ARIMA model is selected using the smallest Akaike Information Criterion 

(AIC) or Schwarz-Bayesian Criterion (SBC). AIC is given by 

                                           AIC = (−2log L + 2m)      

where, m= p+q and L is the likelihood function. SBC is also used as an alternative to AIC 

which is given by 

                                             
2log ( log ) /SBC m n n= +                                            

If the model is not adequate, a new tentative model should be identified, which is again 

followed by the parameter estimation and model verification. Diagnostic information may help 

suggest alternative model(s). The steps of model building process are typically repeated several 

times until a satisfactory mean model is finally selected. The final model can then be used for 

prediction purposes.  

Step 5: Determination of residuals and heteroscedasticity test. 

After finding the mean model now the residuals are to be determined. And we create a new 

variable called ‘rsquare’ by squaring the residuals. Then the ACF and PACF values of the 

‘rsquare’ are determined and the lags in which these values are found to be significant are 

identified. The test for heteroscedasticity is done at identified significant lags. The test 

employed is the ARCH-LM test.  

Step 6: Residuals and diagnostic checking. 
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The residuals obtained from the mean model used for fitting the different GARCH models were 

squared and stored in a new variable called ‘esquare’. As already mentioned previously, the 

diagnostic tests are employed to check whether the residuals are white noise or not. 

 

Step 7: Estimation of parameters. 

The parameters of the obtained model are estimated using method of maximum likelihood 

(MLE). And then forecasting is done using the selecting model. 

5. Illustration 

In this illustration Cotlook A index data is used and was collected from the commodity price 

bulletin, published by the United Nations Convention of Trade and Development (UNCTAD). 

The series contains 360 data pints, 346 data points are used for modelling and remaining 14 

points for forecasting. At first the ARIMA model was applied to the data set and on 

unsatisfactory performance of the model, the GARCH model was used. 

5.1 Fitting of the Cotlook A index 

Various combinations of the ARIMA models were tried, among all, the AR (1) model had 

minimum AIC and BIC values. The AIC value for fitted GARCH model has been found to be 

minimum when the mean equation depends on two recent pasts only. Investigating the 

autocorrelation function (Acf) of squared residuals of AR (2) model, it is found that the Acf 

and Pacf are maximum at lag 3, which is 0.226 and 0.221 respectively. But if we go for AR 

(2)-ARCH (3) model, a large number of parameters are needed to be estimated.  So, to get a 

parsimonious model, the AR (2)-GARCH (1, 1) model is selected. 

The mean and conditional variance for fitted AR (2)-GARCH (1, 1) model is computed as 

follows:  

  yt = 141.9264  –1.3905  yt-1+ 0.4538 yt-2 + t  

                          (3.94)   (0.05)           (0.05) 

where  

t
2/1

tt h  = ,  

and ht satisfies the variance equation 

ht = 8.470 + 0.208 2

1−t + 0.215 ht-1 
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          (1.97)       (0.09)        (0.079) 

The values within brackets denote corresponding standard errors of the estimates. The AIC 

value, for fitted GARCH model is 2288.88. 

Table 1. Forecast of the Cotlook A index series 

MONTH 
ACTUAL 

VALUE 

FORECAST 

ARIMA(1,1,0) 

FORECAST 

AR(2)-

GARCH(1,1) 

Feb-11 469.98 408.34(8.30) 389.59(26.46) 

Mar-11 506.34 416.47(15.56) 371.55(25.74) 

Apr-11 477.56 421.40(22.35) 348.54(25.05) 

May-11 364.91 424.53(28.55) 324.69(24.39) 

Jun-11 317.75 426.66(34.17) 301.98(23.75) 

Jul-11 268.96 428.23(39.29) 281.25(23.13) 

Aug-11 251.55 429.49(43.97) 262.76(22.54) 

Sep-11 257.63 430.57(48.29) 246.50(21.97) 

Oct-11 243.85 431.55(52.30) 232.32(21.42) 

Nov-11 230.78 432.48(56.05) 220.01(20.90) 

Dec-11 210.43 433.37(59.58) 209.35(20.39) 

Jan-12 222.91 434.25(54.45) 200.15(19.91) 

Feb-12 222.12 435.12(57.13) 192.21(19.44) 

Mar-12 219.36 435.99(59.68) 185.37(19.01) 

 

Table 2. Forecast evaluation of the Cotlook A index series 

MODEL RMSE RMAPE (%) 

ARIMA(1,1,0) 44.03 60.72 

AR(2)-GARCH(1,1) 15.38 9.36 

 

6. R code for analysing a time series data using ARCH family of models 

library(“tseries”) 

library(“forecast”) 

library(“fgarch”) 

setwd("C:/Users/Achal/Desktop") # Setting of the work directory 

data<-read.table("bishal.txt") # Importing data  

datats<-ts(data,frequency=12,start=c(1982,4)) # Converting data set into time series 

plot.ts(datats) # Plot of the data set 
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adf.test(datats) # Test for stationarity 

diffdatats<-diff(datats,differences=1) # Differencing the series 

datatsacf<-acf(datats,lag.max=12) # Obtaining the ACF plot 

datapacf<-pacf(datats,lag.max=12) # Obtaining the PACF plot 

auto.arima(diffdatats) # Finding the order of ARIMA model 

datatsarima<-arima(diffdatats,order=c(1,0,1),include.mean=TRUE) # Fitting of ARIMA        

model 

forearimadatats<-forecast.Arima(datatsarima,h=12) # Forecasting using ARIMA model 

plot.forecast(forearimadatats) # Plot of the forecast  

residualarima<-resid(datatsarima) # Obtaining residuals 

archTest(residualarima,lag=12) # Test for heteroscedascity 

# Fitting of AR-GARCH model 

garchdatats<-garchFit(formula = ~ arma(2)+garch(1, 1), data = datats, cond.dist = c("norm"), 

include.mean = TRUE, include.delta = NULL, include.skew = NULL, include.shape = NULL, 

leverage = NULL, trace = TRUE,algorithm = c("nlminb")) 

# Forecasting using AR-GARCH model 

forecastgarch<-predict(garchdatats, n.ahead = 12, trace = FALSE, mse = c("uncond"), 

plot=FALSE, nx=NULL, crit_val=NULL, conf=NULL) 

plot.ts(forecastgarch) # Plot of the forecast 
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1. Introduction 

Bayesian estimation and inference offer several advantages in statistical modeling, 

particularly when incorporating prior knowledge is essential. At the heart of the Bayesian 

paradigm lies the specification of prior distributions, which reflect the analyst’s belief or 

available information before observing the current data. The fundamental assumption in 

Bayesian analysis is that the data alone may not capture the entire underlying behavior of the 

process. Thus, prior information is formally combined with data through Bayes’ theorem, 

producing a posterior distribution of the model parameters. Let us consider the parametric 

space   denote the vector of model parameters, denote the vector of model parameters, ( )   

and Y is the data vector. According to Bayes’ rule, the posterior density  

( ) ( ) ( )y L Y      

where, ( )L Y  is the likelihood function. The straightforward way to estimate   is to compute 

the posterior mean of   as follows: 

ˆ ( )y d   =   

One of the strengths of the Bayesian framework is that it provides full probability distributions 

for parameters, as opposed to point or interval estimates in classical (frequentist) approaches. 

This is particularly beneficial in fields like finance, where rapid information flow justifies the 

use of prior knowledge. 

Bayesian modeling allows for various types of priors. Non-informative priors are used when 

little is known a priori, while conjugate priors simplify calculations since the posterior belongs 

to the same family as the prior. For example, when the likelihood is from the exponential 

family, deriving conjugate priors becomes more tractable (Lee, 2004). Additionally, conjugate 

priors facilitate updating in light of new data by modifying hyperparameters instead of the 

entire distribution. 

mailto:achallama.iasri@icar.org.in
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Given the computational complexity involved, especially in high-dimensional settings, Markov 

Chain Monte Carlo (MCMC) methods are widely used for Bayesian estimation. MCMC 

methods possess two vital characteristics:  

The first advantage is its capability to handle high-dimensional problems efficiently, and the 

second is its ability to draw random samples directly from the posterior distribution. To 

illustrate the process, consider a scenario where information is desired about a distribution, 

known only up to a constant CCC, under the assumption that the state space EEE is either finite 

or countable. In such a case, the distribution can be expressed with a probability mass function 

proportional to the available information. The primary objective of employing the Markov 

Chain Monte Carlo (MCMC) method is to obtain samples from this posterior distribution. 

( )
( ) ( )

( ) ( )
E

f y p
y

f y p


 
 

 





=


  

To obtain the posterior distribution, the following steps are undertaken. First, an ergodic 

Markov Chain is constructed, which converges to a stationary posterior distribution. Next, the 

Markov Chain is used to simulate values over a large number of iterations, denoted by l+k. The 

l-1 samples are discarded to ensure convergence to the stationary distribution, and the 

remaining samples are used for analysis. From these l+k samples, the expectation and other 

summary statistics are computed, as these represent stationary values. The expectation of the 

posterior distribution is particularly significant because it is used to estimate the parameters of 

the model under study.  

( ) ( )
E

E y
 



 





=  

( ) ( )

( ) ( )
E

E

f y p

f y p





  

 




=



 

 

But, if the posterior distribution is high dimensional or else complicated, it is difficult to 

obtain closed form solutions for C. The answer to this is the MCMC method. The two very 

widely used MCMC algorithms are Metropolis-Hastings (MH) algorithm and Gibbs 

sampling. Gibbs sampling is considered to be a special sampler of MH algorithm.  

     2. Sampling Algorithms 

     2.1. Metropolis-Hastings algorithm 
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The MH algorithm is a popular algorithm which is used to obtain a sequence of random 

samples from a proposed distribution ( , )q    where direct sampling is difficult. The 

algorithm is first proposed by Metropolis et al., (1953) and extended by Hastings (1970). 

The idea of MH is simple, in this method a proposal point   is generated from the proposal 

distribution ( ,.)q  with an acceptance probability as 

( ) ( ) , min 1, ,r    =  ,where 

( )
( ) ( )

( ) ( )

,
,

,

q
r

q

   
 

   
=  

This process can be thought of as generating a random number X from a uniform 

distribution U [0,1] and accepting the state   if ( , )X    , otherwise the point   is 

rejected and the algorithm remains in the same state. The quantity ( ),r    is known as the 

MH ratio and hence the algorithm as MH algorithm. This algorithm can be summarized in 

following steps 

1. A proposal distribution is selected with transition matrix Q=(q(I,j))I,jE . Select an 

integer s between 1 and n. 

2. Assign n=0 and 0 =s. 

3. A random variable   is generated such that ( ) ( , )P j q jn = =  and X is generated 

independently. 

4. If ( , )X s j , then  =j, otherwise   = s. 

5. Next n is set as n=n+1 and n =  

6. Go to step 3. 

Random walk algorithm is considered a special case of the Metropolis-Hastings (MH) 

algorithm, where the proposal distribution exhibits symmetry. However, its performance 

significantly deteriorates in high-dimensional models, as increasing dimensionality tends 

to reduce the acceptance rate of proposed samples.  

2.2. Gibbs sampling 

Gibbs sampling, on the other hand, is another popular MCMC algorithm named after Josiah 

Willard Gibbs, though it was introduced by Geman and Geman in 1984. It is known for its 

simplicity, ease of implementation, and effectiveness in addressing high-dimensional 

problems. While conjugate priors are often useful in Bayesian analysis, constructing a joint 

conjugate prior for multiple parameters can be challenging. In such cases, conditional 

conjugate priors are relatively easier to define. Gibbs sampling leverages these conditional 

priors to transform a complex multidimensional sampling problem into a series of simpler 
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one-dimensional problems. The key advantage is that the conditional conjugate prior 

maintains the same form as the posterior distribution. Assuming a data set y = (y1,y2,…,yn)  

where each yi is associated with v parameters, for each j=1,2,..., yi = 1, 2, ..., v, a one-

dimensional conjugate prior is specified and the corresponding conditional posterior is 

derived using Bayes’ theorem. The Gibbs sampling then proceeds iteratively through a 

sequence of these conditional updates. 

1. The initial parameter vector ( )0 0

1,..., v  is defined. 

2. Parameter vector is updated by sampling as follows: 

( )

( )

1 0 0

1 1 2

1 1 0 0

2 2 1 3

,..., ,

, ,..., ,

v

v

p y

p y

   

    
 

. 

. 

. 

( )1 1 1 1

1 2 1, ,..., ,v v vp y     −  

3. Using this updated values as starting parameter values the sampling is repeated M 

times. M is a constant which is selected to be sufficiently large and referred to as burn-

in period. 

4. After simulating ( 1) ( 2) ( ){ , ,..., }M M M n  + + +  from the Gibbs sampling Bayesian 

inferences are drawn. 

The main drawback of this method is that it is infeasible to apply when complete conditional 

distribution is not known. 

 

3. Bayesian time series models 

The Bayesian framework has been widely extended to various time series models. In this 

context, the focus is primarily on MGARCH and VAR models, both of which are multivariate 

and are extensively applied in macroeconomic analysis. These models are capable of capturing 

dynamic relationships among multiple time series variables. Let 𝑌𝑡  represent a (k×1) vector of 

time series variables. The standard form of the p-lag vector autoregressive model, denoted as 

VAR(p), is given as: 

 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 40 - 
 

1 1 2 2 3 3 ...t t t t p t p tY A B Y B Y B Y B Y − − − −= + + + + + +  

where, A is k× 1 vector of intercepts , Bi (i =1, 2, …, p) is k × k matrices of parameters and                    

                         . 

For a multivariate time series                            the MGARCH model is given by: 

 

                                                                                                                                         

Where             is a k x k  positive-definite matrix representing the conditional variance-

covariance of εt . Here, k denotes the number of series and t =1,2,…,n indicates the number of 

observations. The formulation of the MGARCH model mainly depends on how the conditional 

variance is specified. Engle and Kroner (1995) proposed the BEKK model, which is a direct 

extension of the univariate GARCH model to a multivariate setting. In this framework, the 

conditional variance evolves based on the current and past information available in the system. 

A general GARCH(p, q) model, as introduced by Bollerslev (1986), can be expressed as: 

2 2

0 1 1 1 1t t p t p t q t qh h h      − − − −= + + + + + +
, 

0, 0i i  
,
     1+ ii        

where, th  is the conditional variances which depends on the previous error terms as well as 

previous conditional variances of the process. 

Equation (2) can be transferred into multivariate GARCH model with a generalization of the 

resulting variance matrix Ht   

11 12 13

21 22 23

31 32 33

t

h h h

H h h h

h h h

 
 

=  
 
 

 

Each element of Ht depends on the p delayed values of the squared 
t  , the cross product of  

t  and on the q delayed values of elements from Ht . In general, multivariate GARCH (1, 1) 

model can be written as:  

2

11 1 1 2 1 3 11

' 2

0 0 22 2 1 2 2 3 22
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In compact form, the above equation can also be written as: 

                                       '

0 0 1 1 1t t t tH C C A A B H B − − −
 = + +                                                 

For 2 variable case the model can be represented as: 
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 As already discussed, Bayesian analysis requires the assignment of prior distributions to the 

parameters of the model. Accordingly, priors for MGARCH and VAR models are defined. For 

the MGARCH model, normal priors are employed with different parametric ranges based on 

the parameters being estimated. The constant terms of each model are assigned a N(0,10) prior, 

while other parameters are given N(0,100) priors. The use of normal priors is primarily due to 

their conjugate properties, which simplify the computation of the posterior distributions. These 

priors are assigned following Fioruci et al. (2014), who demonstrated their effectiveness in the 

context of MGARCH models. 

( ),Min MinN V 
 

If  iV  denotes the block of MinV
 
associated with the K coefficients in equation i and 

,i jjV  as its 

diagonal elements, then a common implementation of the Minnesota prior would set:  

1

, 2i jj

a
V

p
=

  

for coefficients on own lags 

                                

2

2

ii

jj

a

p





 

for coefficients on lags of variable j ≠ i 

                                   3 iia     for coefficients on exogenous variables 

This prior simplifies the complicated choice of fully specifying all the elements of MinV   in 

choosing three scalars 𝑎1, 𝑎2, 𝑎3. 
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The next prior used is a natural conjugate prior Normal-Wishart. The form of the prior is as 

follows: 

( )

( )11

,

,

N V

W S v

 

−−

 


 

where,  ,V , v  and S are to be selected by the experimenter depending upon the data set in 

use. Then the posterior of this prior is as follows: 

( )

( )11

, ,

,

y N V

y W S v

 

−−

 


 

where,  
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'' 1 1' ' '
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S S S B X X B B V B B V X X B

v T v



−
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=

 = +
 

= + + + − +

= +  

The third prior taken up is the independent Normal-Wishart, which has the following form: 

𝑝(𝛽, ∑−1) =  𝑝(𝛽)𝑝(∑−1) 

where  

𝛽~𝑁(𝛽, 𝑉𝛽) 

and 

∑−1~𝑊(𝑆−1 , 𝑣) 

This prior allows for the prior covariance matrix  �̲�𝛽  , to take any values chosen by the 

researcher, rather than the restrictive ∑ ⊗ �̲� form of the natural conjugate prior. In this prior, 

the joint posterior 𝑝(𝛽, ∑−1|𝑦) does result in an easily computable form that would allow easy 

Bayesian analysis this is due to the fact that posterior means and variances do not have 

analytical forms.

 

4. Data description and illustration 

To demonstrate the application of the Bayesian framework, we implement it within the context 

of a Multivariate GARCH (MGARCH) model, specifically using the BEKK (Baba-Engle-

Kraft-Kroner) specification. For this illustration, a dataset comprising two monthly time 

series—the International Price Index and the Domestic Price Index of edible oils—has been 
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utilized. The International edible oil price index was obtained from the World Bank’s 

Commodity Prices Indices (Pink Sheet), accessible via its official website. The Domestic edible 

oil price index was sourced from the Office of the Economic Adviser, Ministry of Commerce 

and Industry, Government of India. The dataset spans from January 1990 to January 2016, 

consisting of 313 monthly observations. 

In accordance with the Bayesian approach discussed earlier, prior distributions were assigned 

to the model parameters, and the posterior distributions were derived using Markov Chain 

Monte Carlo (MCMC) simulation techniques. The time series plots of both the International 

and Domestic price indices are presented in Figure 1, providing a visual overview of the series' 

behavior over time. The Bayesian parameter estimates for the BEKK-MGARCH model are 

summarized in Table 1, offering insight into the volatility dynamics captured by the model. 

Furthermore, the estimated conditional volatilities of the two series, derived from the posterior 

distributions, are graphically represented in Figure 2, illustrating the time-varying volatility 

patterns inherent in the data. 

 

Figure 1. Time plot of International (bold) and Domestic (dotted) edible oils price indices 
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R code for analysing a time series data using ARIMA and AR-GARCH model 

library(“tseries”) 

library(“forecast”) 

library(“fgarch”) 

setwd(&quot;C:/Users/Desktop&quot;) # Setting of the work directory 

data&lt;-read.table(&quot;data.txt&quot;) # Importing data 

datats&lt;-ts(data,frequency=12,start=c(1982,4)) # Converting data set into time series 
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plot.ts(datats) # Plot of the data set 

adf.test(datats) # Test for stationarity 

diffdatats&lt;-diff(datats,differences=1) # Differencing the series 

datatsacf&lt;-acf(datats,lag.max=12) # Obtaining the ACF plot 

datapacf&lt;-pacf(datats,lag.max=12) # Obtaining the PACF plot 

auto.arima(diffdatats) # Finding the order of ARIMA model 

datatsarima&lt;-arima(diffdatats,order=c(1,0,1),include.mean=TRUE) # Fitting of ARIMA 

model 

forearimadatats&lt;-forecast.Arima(datatsarima,h=12) # Forecasting using ARIMA model 

plot.forecast(forearimadatats) # Plot of the forecast 

residualarima&lt;-resid(datatsarima) # Obtaining residuals 

archTest(residualarima,lag=12) # Test for heteroscedascity 

# Fitting of AR-GARCH model 

garchdatats&lt;-garchFit(formula = ~ arma(2)+garch(1, 1), data = datats, cond.dist = 

c(&quot;norm&quot;), 

include.mean = TRUE, include.delta = NULL, include.skew = NULL, include.shape = 

NULL, leverage = NULL, trace = TRUE,algorithm = c(&quot;nlminb&quot;)) 

# Forecasting using AR-GARCH model 

forecastgarch&lt;-predict(garchdatats, n.ahead = 12, trace = FALSE, mse = 

c(&quot;uncond&quot;), 

plot=FALSE, nx=NULL, crit_val=NULL, conf=NULL) 

plot.ts(forecastgarch) # Plot of the forecast 
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Introduction 

 

Count data refers to data in which observations assume only non-negative integer values, 

typically arising from counting occurrences rather than ranking or measuring. These data exhibit 

unique characteristics, such as discreteness, skewness, over-dispersion (where variance exceeds the 

mean), and often excess zeros. Count data is prevalent in various domains and is increasingly 

encountered in time series formats. Examples include: modeling pest and disease outbreaks in 

agriculture, assessing the health effects of environmental pollution, analyzing daily rainfall, air 

quality indices, monthly polio cases, daily hospital admissions for asthma, and traffic accident 

frequencies. Similarly, purchase frequencies in a store or consumer demand over time can also be 

modeled as time series of counts. 

Time series analysis of count data is an evolving field motivated by its wide range of 

applications. Such data involve temporal dependence (autocorrelation) and discrete-valued 

distributions, and therefore standard time series models—which often assume normality and 

continuity—may not be appropriate. Neglecting either the discrete nature or the serial dependence 

in the data can lead to serious model misspecification. 

A successful model for count time series must effectively account for both dependence 

between observations and over-dispersion. In many cases, events are relatively rare, rendering the 

use of the normal distribution inadequate. Consequently, models such as the Autoregressive 

Conditional Poisson (ACP) model have been developed. In its basic form, the ACP model assumes 

that counts follow a Poisson distribution, where the conditional mean (given past observations) 

evolves according to an autoregressive structure. While such a model is conditionally equi-

dispersed, it often becomes unconditionally over-dispersed due to temporal dependence. 

To further handle situations where mean and variance are not equal, more flexible 

approaches have been proposed. Notably, the Integer-valued Generalized Autoregressive 

Conditional Heteroscedasticity (INGARCH) models extend the Poisson and negative binomial 

frameworks by incorporating conditional heteroscedasticity into count data modeling. The 

INGARCH model is considered a member of the generalized linear model (GLM) family, adapted 

specifically for integer-valued time series. 

In agricultural research and related fields, count-based time series—such as number of pest 

attacks, disease incidences, or harvest losses—are common. Employing appropriate statistical 

models like Poisson regression, Negative Binomial models, ACP, and INGARCH is crucial for 

accurate inference, forecasting, and policy recommendations.  

Poisson Regression Model 
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Poisson distribution is a class of generalized linear model which follows Poisson 

distribution. Let us consider a random variable y follows a Poisson distribution with parameter

 , if it takes integer values y = 0, 1, 2, … with probability distribution  

 ( )
!y

e
yYP

y−
== 0 ,                                                                                             (1) 

where the mean and variance expression of the distribution is ( ) ( ) == yVARyE . So it is seen 

that the mean and variance expression are equal and if any factor influences the mean value, it 

will influence the variance also. Thus, the homoscedasticity would not be appropriate for this 

kind of distribution (Chen and Lee 2016). The parameters of Poisson regression model 𝑦𝑖 =

exp(𝑋𝑖
′𝛽) + 𝜀𝑖 can be estimated using maximum likelihood method.  

Assumptions in Poisson Regression 

• The probability of at least one occurrence of the event in a given time interval is 

proportional to the length of the interval.  

• The probability of two or more occurrences of the event in a very small time interval is 

negligible. 

• The numbers of occurrences of the event in disjoint time intervals are mutually 

independent. 

Then the probability distribution of the number of occurrences of the event in a fixed 

time interval is Poisson with mean µ = λt, where λ is the rate of occurrence of the event per 

unit of time and t is the length of the time interval. A process satisfying the three assumptions 

listed above is called as a Poisson process. The most important point in estimating parameters 

of Poisson regression is its relationship between the mean and the variance. A useful property 

of the Poisson distribution is that the sum of independent Poisson random variables is also 

Poisson. Specifically, if Y1 and Y2 are independent with Yi ∼ P(µi) for i = 1, 2 then Y1 + Y2 

∼ P(µ1 + µ2). 

Negative Binomial Regression Model 

 A distribution of counts will usually have a variance that’s not equal to its mean. When 

we see this happen with data that we assume (or hope) is Poisson distributed, we say we have 

under or over-dispersion, depending on if the variance is smaller or larger than the mean. 

Performing Poisson regression on count data that exhibits this behavior results in a model that 

doesn’t fit well. Negative binomial regression is a type of generalized linear model in which 

the dependent variable Y is a count of the number of times an event occurs. It can be used for 

over-dispersed count data, that is when the conditional variance exceeds the conditional mean. 

It can be considered as a generalization of Poisson regression since it has the same mean 

structure as Poisson regression and it has an extra parameter to model the over-dispersion. If 

the conditional distribution of the outcome variable is over-dispersed, the confidence intervals 

for the Negative binomial regression are likely to be narrower as compared to those from a 
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Poisson regression model. Unlike the Poisson distribution, the variance and the mean are not 

equivalent. This suggests it might serve as a useful approximation for modeling counts with 

variability different from its mean.   

Let Y is random variable which follows the negative binomial distribution with 

parameters (r, θ), where θ ∈ (0, 1) and r an integer, then its probability mass function is given 

by  

𝑃[𝑌 = 𝑦] = (𝑦+𝑟−1
𝑦

) 𝜃𝑦(1 − 𝜃)𝑟 ,   𝑦 = 0,1,2, …                                                                         

(2) 

 

𝑦~𝑁𝑒𝑔𝐵𝑖𝑛(𝑟, 𝜃)  Therefore 𝐸[𝑌] =
𝑟𝜃

(1−𝜃)
   and   𝑉𝑎𝑟[𝑌] =  

𝑟𝜃

(1−𝜃)2
 .  

 

Model Assumption 

As we mentioned earlier, negative binomial models assume the conditional means are not equal 

to the conditional variances. This inequality is captured by estimating a dispersion parameter 

(not shown in the output) that is held constant in a Poisson model. Thus, the Poisson model is 

actually nested in the negative binomial model. We can then use a likelihood ratio test to 

compare these two and test this model assumption. To do this, we will run our model as a 

Poisson. 

Negative binomial regression can be used for over-dispersed count data that is when 

the conditional variance exceeds the conditional mean. It can be considered as a generalization 

of Poisson regression since it has the same mean structure as Poisson regression and it has an 

extra parameter to model the over-dispersion. If the conditional distribution of the outcome 

variable is over-dispersed, the confidence intervals for the Negative binomial regression are 

likely to be narrower as compared to those from a Poisson regression model. 

Generalized Linear Model 

Let us denote the count time series by  {𝑌𝑡 ∶ 𝑡 ∈ 𝑁} and time varying r-dimensional covariate 

vector say  {𝑋𝑡 ∶ 𝑡 ∈ 𝑁}  i.e. 𝑋𝑡 = (𝑋𝑡,1,… ,𝑋𝑡,𝑟,)
𝑇 .   The conditional mean becomes 

𝐸(𝑌𝑡 |𝐹𝑡−1) = 𝜆𝑡 and Ft is historical data.  

The generalized model form is expressed as follows 

𝑔(𝜆𝑡) = 𝛽0 + ∑ 𝛽𝑘�̃�
𝑝
𝑘=1  (𝑌𝑡−𝑖𝑘) + ∑ 𝛼𝑙𝑔

𝑞
𝑙=1  (𝜆𝑡−𝑗𝑙) + 𝜂

𝑇                                                           (3) 

Where 𝑔 is link function and �̃� is transformation function. 𝑔(𝜆𝑡) is linear predictor. To allow 

for regression on arbitrary past observations of the response,  𝑃 = {𝑖1,𝑖2,… , 𝑖𝑝,}  and 

0<0 < 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑝 < ∞  for leads to lagged observations 𝑌𝑡−𝑖1 , … , 𝑌𝑡−𝑖𝑝  . Set 𝑄 =

{𝑗1,𝑗2,… , 𝑗𝑞,} and 0<0 < 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑝 < ∞. The set 𝑄  lagged in parameter mean i.e.  

𝜆𝑡−𝑖1 , … , 𝜆𝑡−𝑖𝑝.  
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Specification of the model order, i.e., of the sets P and Q, are guided by considering the 

empirical autocorrelation functions of the observed data. This approach is described for ARMA 

models in many time series analysis literatures. 

Cases of GLM 

Case 1: Consider the situation where  𝑔  and �̃�  are equal to identity i.e. 𝑔(𝑥)= �̃�(𝑥) = 𝑥 , 

further P={1,…,p}, Q={1,…,q} and 𝜂 = 0 then the GLM model (3) becomes  

𝜆𝑡 = 𝛽0 + ∑ 𝛽𝑘
𝑝
𝑘=1  𝑌𝑡−𝑖𝑘 + ∑ 𝛼𝑙𝜆𝑡−𝑗𝑙

𝑞
𝑙=1                                                                                          (4) 

Assuming further that 𝑌𝑡|𝑌𝑡−1 is Poisson distributed, then we obtain an integer-valued GARCH 

model of order p and q, abbreviated as INGARCH(p,q). These models are also known as 

autoregressive conditional Poisson (ACP) models (Heinen 2003, Ferland et al. 2006 and 

Fokianos, et al. 2009). 

Case 2: The Negative Binomial distribution allows for a conditional variance to be larger 

than the mean 𝜆𝑡which is often referred to as over-dispersion (Christou and Fokianos 2014). 

It is assumed that 𝑌𝑡|𝐹𝑡−1~𝑁𝑒𝑔𝐵𝑖𝑜𝑛𝑜𝑚(𝜆𝑡, ∅). The Poisson distribution is a limiting case of 

the Negative Binomial when ∅ → ∞.  

 

R codes to implement count TS models 

rm(list = ls()) 

d1=read.table(file = "CHN.txt", header = T) 

head(d1) 

attach(d1) 

reg1=cbind(MAXT, MINT, RF, MRH,  ERH) 

YSB1=as.integer(YSB) 

Box.test(YSB1) 

##### training data  ############ 

reg11=cbind(MAXT[1:421], MINT[1:421], RF[1:421], MRH[1:421],  ERH[1:421]) 

reg12=cbind(MAXT[422:428], MINT[422:428], RF[422:428], MRH[422:428],  

ERH[422:428]) 

reg21=cbind(MAXT[1:451], MINT[1:451], RF[1:451], MRH[1:451],  ERH[1:451]) 

reg22=cbind(MAXT[452:461], MINT[452:461], RF[452:461], MRH[452:461],  

ERH[452:461]) 

ysb.train1=YSB1[1:421] 

ysb.test1=YSB1[422:428] 

ysb.train2=YSB1[1:451] 

ysb.test2=YSB1[452:461] 

############## Poisson INGARCH ############# 

M1=tsglm(ysb.train2, model=list(past_obs=5, past_mean=5), 

                   xreg=reg21, distr="poisson") 

Box.test(M1$residuals) 

summary(M1) 

coeftest(M1) 

M1$fitted.values 
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predict(M1, n.ahead=8, newxreg=reg22) 

############## NB INGARCH ############# 

M2=tsglm(ysb.train2, model=list(past_obs=5, past_mean=5), 

         xreg=reg21, distr="nbinom") 

Box.test(M2$residuals) 

summary(M2) 

coeftest(M2) 

M2$fitted.values 

predict(M2, n.ahead=8,newxreg=reg22) 
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Time Series Models. Journal of Time Series Analysis, 35(1), 55–78. 
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Spatiotemporal Time Series Modelling and Forecasting for 

Abiotic Stress Management in Agriculture 

Santosha Rathod, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi Kumar, Prabhat 

Kumar 

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115 

Email: santosha.rathod@icar.org.in 

Introduction 

Spatiotemporal time series are observations recorded across both space and time, incorporating 

systematic dependencies among spatial locations and temporal patterns. These models 

effectively handle single variables recorded over time from multiple locations. Classic 

examples of spatio-temporal data include daily or hourly carbon emission levels from 

monitoring stations, daily river discharge across various basins, frequent weather parameter 

recordings (temperature, rainfall, humidity, etc.) from different agro-climatic zones, and traffic 

flow data from multiple checkpoints. Traditionally rooted in geo-statistics, spatio-temporal 

modeling has now found applications in sociology, economics, environmental sciences, 

ecology, and notably in agricultural research. 

In the context of abiotic stress management in agriculture, spatio-temporal models are highly 

relevant as they allow for detection, monitoring, and forecasting of stress patterns like drought, 

heat waves, frost, and soil salinity across different regions and seasons. These stresses are not 

static—they evolve both geographically and temporally, making it essential to adopt models 

that capture variations across space and time simultaneously. For instance, analyzing how 

drought severity varies across districts over cropping seasons or how rising temperature trends 

affect heat-stress in wheat zones helps in site-specific and timely adaptation strategies. 

Research suggests that combining spatial and temporal data enhances the modeling accuracy 

and decision-making effectiveness, especially under conditions of uncertainty posed by climate 

variability. Thus, spatio-temporal modeling forms the backbone of early warning systems, 

stress forecasting tools, and real-time advisories that are crucial for mitigating the adverse 

impacts of abiotic stress on crop productivity and food security. 

Despite significant advances in univariate time series modeling, progress in spatio-temporal 

time series analysis has been relatively limited. This is primarily due to computational 

complexities and the inaccessibility of simultaneous spatial and temporal information. While 

univariate time series models focus solely on temporal autocorrelation—typically modeled 

through the Box-Jenkins autoregressive moving average (ARMA) framework (Box and 
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Jenkins, 1970)—spatio-temporal models are designed to capture dependencies across both 

space and time. 

Spatio-temporal models incorporate observations from multiple spatial locations across several 

time periods, thereby enabling a more comprehensive understanding of complex dynamic 

systems. In this context, spatio-temporal autoregressive moving average (STARMA) models 

extend the conventional ARMA models by including spatial lags in both the autoregressive and 

moving average components. These models are particularly useful for datasets where 

observations exhibit autocorrelation not only over time but also across geographic or spatial 

domains.  

STARMA Model 

The STARMA model, introduced by Pfeifer and Deutsch (1980b), is tailored to handle 

such scenarios. It considers a single variable Zi(t), observed at N fixed spatial locations (i = 1, 

2,…, N) on T time periods (t = 1, 2, . . ., T).  The N spatial locations can be a geographical 

location, country, state, etc. The spatial dependencies between N times series is incorporated 

through N*N spatial weight matrices.  Analogous to univariate time series, Z(t) is expressed as 

a linear combination of past observations and errors. The STARMA model (Pfeifer and 

Deutsch, 1980a), denoted by 𝑆𝑇𝐴𝑅𝑀𝐴(𝑝𝜆1 , 𝜆2  ,...,   λ𝑝, 𝑞𝑚1 , 𝑚2  ,...,   m𝑞) can be represented in the 

matrix equation as follows;              

𝑍(𝑡) =  ∑∑𝜙𝑘𝑙  𝑊
𝑙

𝜆𝑘

𝑙=0

𝑝

𝐾=1

𝑍(𝑡 − 𝑘) −∑∑𝜃𝑘𝑙  𝑊
𝑙

𝑚𝑘

𝑙=0

𝑞

𝐾=1

𝜀(𝑡 − 𝑘) + 𝜀(𝑡) 

                                                                                                                                … (1.1) 

Where, 

 𝒛(𝒕) = [𝒛𝟏(𝑡),  …… , 𝒛𝑵(𝑡)]
′is a N × 1 vector of observations at time t = 1,…, T, 

 p is the autoregressive order (AR) with respect to time,  

 q is the moving average order (MA) with respect to time, 

 𝜆𝑘 is the spatial order of the kth AR term, 

 𝑚𝑘 is the spatial order of the kth MA term, 

 𝜙𝑘𝑙 is the AR parameter at temporal lag k and spatial lag l (scalar), 

 𝜃𝑘𝑙  is the MA parameter at temporal lag k and spatial lag l (scalar) and 
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 𝑊𝑙is the N*N spatial weight matrix with spatial order l with diagonal elements zero   and non-

diagonal elements is the relation between sites.  

The spatial weight matrix  𝑊(0)= IN  i.e. Identity matrix and each row of 𝑊𝑙 must add up to 

one.  The random error vector 𝜀(𝑡) = [𝜀1(𝑡), 𝜀2(𝑡), … , 𝜀𝑁(𝑡)]
′ is normally distributed at time t 

with 𝐸[𝜀(𝑡)] = 0 , 𝐸[𝜀(𝑡)𝜀′(𝑡 + 𝑠)] = {
𝐺 = 𝜎2𝐼𝑁 𝑖𝑠 𝑠 = 0
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

 and 𝐸[𝜀(𝑡)𝜀′(𝑡 + 𝑠)] =

0, 𝑓𝑜𝑟 𝑠 > 0.  

There are two subclasses of the STARMA model, in equation (3) when q=0, only 

autoregressive terms remain and consequently the model progresses toward becoming space-

time autoregressive or STAR model which is represented as follows; 

𝒁(𝒕) =  ∑ ∑ 𝜙𝑘𝑙  𝑊
𝑙𝜆𝑘

𝑙=0
𝑝
𝐾=1 𝑍(𝑡 − 𝑘) + 𝜀(𝑡)                                                         …(1.2) 

When p becomes 0, only moving average terms remains and hence the model becomes 

space-time moving average or STMA model which is represented as follows; 

𝒁(𝒕) =  𝜀(𝑡) − ∑ ∑ 𝜃𝑘𝑙  𝑊
𝑙𝑚𝑘

𝑙=0
𝑞
𝐾=1 𝜀(𝑡 − 𝑘)                                            … (1.3)                         

Spatial weight matrix 

Building the spatial weight matrix is a crucial step in STARMA modeling. The process 

involves determining the hierarchical ordering of neighbors for each location and selecting an 

appropriate sequence of weighting matrices. This selection is subjective and depends on the 

model builder’s discretion. The complexity of the weight matrix directly influences the 

difficulty in estimating the parameters of the STARMA model. In most applications, it is often 

assumed that spatial patterns are equal and regularly spaced to simplify the modeling process. 

However, this is typically just a simplifying assumption, as in reality, sites are usually 

irregularly spaced. One common and simple method for assigning weights is the binary 

scheme, where a weight of one is assigned if two areas share a common border and zero 

otherwise, as suggested by Griffith (1996, 2009). 
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Fig.1: Schematic representation of spatial weight grid 

In spatio-temporal modeling, the construction and normalization of the spatial weight 

matrix is a critical step, as it governs the spatial dependence structure among the observational 

units. A common practice in constructing these matrices is row normalization, wherein each 

row is scaled such that its elements sum to one. This approach standardizes the influence 

received by each spatial unit from its neighbors. However, some studies have employed column 

normalization, where the focus shifts to the influence exerted by a unit iii on others, rather than 

the influence received from a neighboring unit j. 

The choice of normalization scheme is non-trivial, as it can significantly affect the 

inferences drawn from the model. Different weight structures may result in varying degrees of 

spatial influence, potentially introducing bias and leading to divergent interpretations of the 

underlying spatial dynamics. Moreover, in spatio-temporal data analysis, the assumption that 

the influence from neighboring units remains constant over time may not always be realistic. 
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Consequently, the specification of spatial weights should be done with careful consideration of 

temporal variability and hierarchical spatial relationships. 

Spatial weight matrices should also incorporate the ordering of neighbors. For example, 

first-order neighbors are those directly adjacent to a target location, while second-order 

neighbors are more distant but still exert influence, followed by third-order and higher-order 

neighbors. This hierarchical structure allows for modeling spatial autocorrelation at multiple 

levels of proximity. A schematic representation of such a spatial weight grid, as proposed by 

Pfeifer and Deutsch (1980b), is illustrated in Figure 1.  

STARMA Modeling Procedure  

Similar to the well-established Box–Jenkins methodology for univariate ARIMA 

models, the STARMA model (Spatio-Temporal Autoregressive Moving Average) follows a 

three-stage modeling procedure comprising: 

1. Identification 

2. Estimation, and 

3. Diagnostic Checking 

This structured approach, as proposed by Pfeifer and Deutsch (1980b), enables 

systematic development and evaluation of spatio-temporal models. 

A STARMA model is considered stationary if its covariance structure remains invariant 

over time and all the roots of the model lie within the unit root circle. In this context, the 

invertibility of the spatio-temporal autoregressive (STAR) model is a necessary condition for 

the stationarity of the STARMA model. Ensuring these properties is essential for the model to 

yield valid statistical inferences and reliable forecasts.  

Model Identification 

The space-time autocorrelation function (STACF) and space-time partial 

autocorrelation function (STPACF) are employed to determine the orders of the STAR and 

STMA models. Similar to the univariate ARIMA model, the identification of STAR and STMA 

orders is based on the presence of significant spikes in the STACF and STPACF plots. The 

space-time autocorrelation function (STACF) between the lth and kth order neighbors with a 

time lag s (where s = 1,…,k and h = 0,1,…,λ) is defined as follows. 
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𝜌𝑙𝑘(𝑠) =
∑ ∑ 𝑊(𝑙)𝑍𝑖(𝑡)𝑊

(𝑘)𝑍𝑖(𝑡+𝑠)
𝑇−𝑆
𝑡=1

𝑁
𝑖=1

[∑ ∑ (𝑊(𝑙)𝑍𝑖(𝑡))
2  .  (𝑊(𝑘)𝑍𝑖(𝑡+𝑠))

2]𝑇−𝑆
𝑡=1

𝑁
𝑖=1

1
2

                                                         …(1.4)   

The space time partial autocorrelation function (STPACF) is expressed in following equation; 

𝜌ℎ0(𝑠) = ∑ ∑ 𝜙𝑗𝑙𝜌ℎ𝑙(𝑠 − 𝑗)
𝜆
𝑙=0

𝑘
𝑗=1                                                               …(1.5)                                                                                     

Characteristics of the theoretical space-time autocorrelation and partial autocorrelation 

functions for STAR, STMA and STARMA models (1.1) are depicted in following table. 

 

Model Parameter Estimation 

The maximum likelihood estimates of 

   𝚽 = [ϕ10,ϕ11, … , ϕ1𝜆1 , … , ϕp0, ϕp1, … , ϕp𝜆𝑝]
′ and  

  Θ = [θ10,θ11, … , θ1𝜆1 , … , θq0, θq1, … , θp𝜆𝑞]
′ rely on the assumption of errors i.e. which are 

normally distributed with mean zero and variance-covariance matrix equal to 𝜎2𝐼𝑁. The 

likelihood function for the same is defined as follows;  

  𝑓(𝜀|Φ,Θ, 𝜎2)=(2𝜋)
−𝑇𝑁

2 |𝜎2𝐼𝑁𝑇|
−1

2  exp {−
1

2𝜎2
𝜖′𝐼𝜖} 

                          =(2𝜋)
−𝑇𝑁

2 (𝜎2)
−𝑇𝑁

2  exp {−
𝑆(Φ,Θ)

2𝜎2
}                                         …(1.6) 

Where, 

 𝑆(Φ,Θ) = 𝜖′𝐼𝜖 = ∑ ∑ 𝜖𝑖
2(𝑡)𝑇

𝑡=0
𝑁
𝑖=1  is the sum of squares of the errors and                𝜖′ =

[𝜖1(1),…, 𝜖1(𝑇) ,…, 𝜖𝑁(1) ,…, 𝜖𝑁(𝑇) ]. Finding the values of the parameters that maximize 

the likelihood function is equivalent to finding the values of Φ and Θ that minimize the sum of 

squares 𝑆(Φ,Θ). Therefore, the problem is reduced to finding the least squares estimates of Φ 

and Θ . 
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 The errors 𝜀(𝑡) need to be recursively calculated using the equation: 

     𝜀(𝑡)=𝑧(𝑡) + ∑ ∑ 𝜙𝑘𝑙
𝜆𝑘
𝑙=0

𝑝
𝑘=1 𝑊(𝑙)𝑧(𝑡 − 𝑘) − ∑ ∑ 𝜃𝑘𝑙

𝑚𝑘
𝑙=0

𝑞
𝑘=1 𝑊(𝑙)𝜀(𝑡 − 𝑘)     …(1.7) 

for t = 1, ... , T and for given values of the parameters (Φ,Θ).  

Because the values of the observations z and of the errors care unknown for times previous to 

time 1, these initial values need to be calculated. Thus, for any given choice ofthe parameters 

(Φ,Θ) and starting values (𝑧 ∗, 𝑐 ∗) the set of values 𝑐(𝑐𝐼 >, 𝑒 𝐼 𝑧 ∗, 𝑐 ∗,𝑊) could be calculated 

successively given a particular data set z. The log likelihood associated with the parameter 

values (Φ,Θ, 𝜎2) conditional on the choice  of (𝑧 ∗, 𝑐 ∗) would be  

    𝑙∗(Φ,Θ, 𝜎
2) = −

𝑇𝑁

2
ln(2𝜋) −

𝑇𝑁

2
𝜎2 −

𝑆∗(Φ,Θ)

2𝜎2
                                                    …(1.8) 

So for fixed 𝜎2 , the conditional maximum likelihood estimates of Φ,Θ are the conditional 

least squares estimates obtained by finding the values of Φ,Θ that minimize the conditional 

sum of squares function 

𝑆∗(Φ,Θ) = ∑ ∑ 𝜖𝑖
2(𝑡)𝑇

𝑡=0
𝑁
𝑖=1                                                                         …(1.9) 

Diagnostic-Checking 

At this stage, the goal is to assess whether the model adequately represents the data. If the fitted 

model is appropriate, the residuals should resemble Gaussian white noise, meaning they should 

be normally distributed with a mean of zero and a variance-covariance matrix equal to σ²Iₙ. 

One approach to test for correlation is to compute the sample space-time autocorrelations of 

the residuals and examine whether any significant structure remains. If the model is correctly 

specified, then 

 𝑣𝑎𝑟(�̂�𝑙0(𝑠)) ≈
1

𝑁(𝑇−𝑠)
                                                   …(1.10) 

where ρ̂ₗ₀(s) represents the space-time autocorrelation function of the residuals from the fitted 

model. Since these residual space-time autocorrelations are approximately normal, they can be 

standardized and assessed for statistical significance. If residuals display dependence, the 

structure is identified, and the model is revised accordingly. 
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Case Study: Forecasting Monthly Mean Maximum Temperature in North Karnataka Districts 

(Rathod et al., 2018). This study focuses on modeling and forecasting the monthly mean 

maximum temperature across nine districts in the northern region of Karnataka, India (see Fig. 

1). The proposed STARMA methodology was applied to this spatio-temporal dataset. For 

model development, data from January 2000 to August 2015 were used, while the period from 

September 2015 to August 2016 was reserved for validating the forecasting performance of the 

fitted model. 

 

Fig. 1. Geographical map of karnataka 

Construction of spatial weight matrix: 

As described in the methodology section, the spatial weight matrix was constructed by 

assigning equal weights to all neighboring locations. The spatial configuration of the nine 

selected locations is illustrated in Figure 2.10, where each location is labeled numerically from 

1 to 9. Based on their geographical proximity, a connectivity-based spatial weight matrix was 

formulated. 

For instance, with reference to location 1, the first-order neighbors are locations 2 and 8, while 

locations 3, 6, and 7 are identified as second-order neighbors. The complete list of first- and 

second-order neighbors for all nine locations is provided in Table 1. In the uniform spatial 

weighting scheme, equal weights are assigned to each neighboring unit. For row normalization, 

which ensures that each row of the matrix sums to one, the weight assigned to each neighbor 

is computed as 1/n, where n is the number of neighbors for a particular location. For example, 

location 1 (Gulbarga) has two first-order neighbors; thus, each neighbor is assigned a weight 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 59 - 
 

of ½=0.5. Following this logic, weights for all nine locations are computed and presented in 

the first-order spatial weight matrix in Table 3. 

In addition, this study also incorporates a second-order spatial weight matrix into the STARMA 

model. For location 1, the second-order neighbors are locations 3, 6, and 7. Since there are 

three neighbors, a weight 1/3≈0.33 is assigned to each. This procedure is applied similarly for 

all other locations, and the resulting second-order spatial weight matrix is presented in Table 

4. To estimate the Spatio-Temporal Autocorrelation Function (STACF) and Spatio-Temporal 

Partial Autocorrelation Function (STPACF), the model requires incorporation of the zero-order 

(Table 2), first-order (Table 3), and second-order (Table 4) spatial weight matrices. Notably, 

in the case of the zero-order spatial weight matrix, where no external spatial influence is 

assumed, all diagonal elements are set to one, reflecting self-dependence of each spatial unit, 

and off-diagonal elements are zero, indicating no spatial interaction with other locations 

Fig. 2.: Map of districts/locations considered 

 

Table 1: Neighbors of each site for each spatial order 

Location Order 

1 2 

1 2,8 3,6,7 

2 1,3 4,8,7 

3 2,4,5,6 7,8 

4 3,5 2 

5 3,4,6 9 

6 3,5,7,9 2,8 

7 6,8,9 1,2,3 

8 1,7,9 2,3,6 

9 6,7,8 5 

 

1. Gulbarga 

2. Bijapur 

3. Bagalkot 

4. Belgaum 

5. Dharwad 

6. Gadag 

7. Koppal 

8. Raichur 

9. Bellary 
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STARMA model fitting 

In this study, the STARMA model was estimated following the three-stage procedure outlined 

by Pfeiffer and Deutsch (1980a). As detailed in the methodology section, the STARMA 

estimation process is an extension of the Box-Jenkins ARIMA framework adapted to a spatio-
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temporal context. Similar to ARMA models, it involves three fundamental steps: model 

identification, parameter estimation, and diagnostic checking. Based on the significant spikes 

observed in the STACF and STPACF plots, the STARMA(1,0,1) model was selected. The 

parameters of this model were estimated using the maximum likelihood method, and the 

estimates, along with their standard errors and p-values, are provided in Table 5. These 

estimated parameters were incorporated into the model to generate forecasts. For diagnostic 

verification, the Multivariate Box-Pierce non-correlation test was employed, confirming that 

the residuals were uncorrelated. The forecasting performance of the model is summarized in 

Table 6. 

Table 5: STARMA Model parameters  

Spatial lag Slag 0 Slag 1 Slag 2 

AR MA AR MA AR MA 

Parameters -0.66 

(0.023) 

0.119 

(0.010) 

0.171 

(0.052) 

0.213 

(0.0157) 

0.79 

(0.089) 

0.11 

(0.116) 

Probability <0.001 <0.001 0.013 0.004 <0.001 0.010 

 

The Multivariate Box-Pierce non-correlation test of residuals yielded a Chi-square statistic of 

69.86 with a p-value of 0.31, indicating no significant autocorrelation among the residuals. Th

e values presented within parentheses denote the corresponding standard errors. To assess and

 compare the forecasting performance of the ARIMA and STARMA models, the Mean Absol

ute Percentage Error (MAPE) was computed and is reported in Table 6. The results reveal tha

t the STARMA model consistently produced lower MAPE values across all study locations. T

his consistent performance suggests that the STARMA model outperforms the conventional B

ox-Jenkins ARIMA model in all cases considered. 

 

R cods to implement STARMA model 

#install.packages("starma") 
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#install.packages("spdep") 

rm(list = ls()) 

library(starma) 

library(spdep) 

library(forecast) 

w0.mat=as.matrix(read.table(file="wo.txt",header=TRUE)) 

w1.mat=as.matrix(read.table(file="w1.txt",header=TRUE)) 

w0.mat 

w1.mat 

wlist =list(order0=w0.mat, order1=w1.mat) 

wlist 

st=as.matrix(read.table(file="ukavg.txt",header=TRUE))  # data read 

st 

stcor.test(st, wlist) #spatial corr 

stacf(st, wlist, tlag.max=36) 

stpacf(st, wlist, tlag.max=36) 

#model fitting 

#ar <- matrix(c(1, 1, 1, 0), 1,1) 

#ma <- matrix(c(0, 1), 1, 2) 

model=starma(st, wlist, ar = 1, ma = 1) 

model 

ab=summary(model) 

ab 

capture.output(ab, file = "myfile.txt") 

res=model$residuals 

stcor.test(res, wlist) 
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Space–Time ARIMA Model. Advanced Materials Research, 156–57, 979–83. 

• Pfeifer, P.E., and Bodily, S.E. (1990). A test of space-time ARMA modeling and 
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1. Introduction 

The Vector Autoregressive (VAR) model is a powerful multivariate time series modeling 

technique that captures the linear interdependencies among multiple time-dependent variables. 

Unlike univariate time series models that handle a single variable, VAR models are particularly 

useful when the objective is to model and forecast more than one variable simultaneously, 

especially when these variables influence each other. In a VAR model, each variable in the 

system is expressed as a linear function of its own past values and the past values of all other 

variables in the system. This makes VAR especially suitable for modeling complex systems in 

which feedback among variables is present, such as in economics, finance, or agriculture. 

2. Basic Concepts 

The VAR model was introduced by Christopher Sims in 1980 as an alternative to the traditional 

structural economic models that imposed strong theoretical restrictions. One of the key features 

of the VAR model is that it treats all variables in the system as endogenous by default, meaning 

that it does not impose any distinction between dependent (endogenous) and independent 

(exogenous) variables initially. This makes the model flexible and data-driven, allowing the 

interrelationships among variables to emerge naturally through estimation. Because of this 

 property, VAR is especially useful in macroeconomic modeling, financial time series 

analysis, and agricultural systems where multiple variables are mutually influencing each other 

over time. 

3. Mathematical Formulation 

For two variables (𝑌1 and 𝑌2), a VAR(1) model looks like: 

𝑌1𝑡 = 𝑎10 + 𝑎11𝑌1(𝑡−1) + 𝑎12𝑌2(𝑡−1) + 𝑒1𝑡 

𝑌2𝑡 = 𝑎20 + 𝑎21𝑌1(𝑡−1) + 𝑎22𝑌2(𝑡−1) + 𝑒2𝑡 
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Here, 𝑌1𝑡 and 𝑌2𝑡  represent the values of the two variables at time ttt, the aija_{ij}aij 

coefficients are parameters to be estimated, and 𝑒1𝑡, 𝑒2𝑡 are white noise error terms. The model 

shows how each variable depends not only on its own lagged values but also on the lagged 

values of the other variable. 

General VAR(p) Model (for k variables): 

Let 𝑌𝑡 = (𝑦1𝑡, 𝑦2𝑡, … , 𝑦𝑛𝑡)  denote an (𝑛 × 1) vector of time series variables. The basic 𝑝-lag 

vector autoregressive VAR (𝑝) model has the form: 

𝑌𝑡 = 𝐴 + 𝐵1𝑌𝑡−1 + 𝐵2𝑌𝑡−2+,… , 𝐵𝑝𝑌𝑘−𝑝 +∈𝑡                                                                         (7) 

where, A is (𝑛 × 1) vector of intercepts, 𝐵𝑖 (𝑖=1, 2, …, 𝑝) is 𝑘 × 𝑘 matrices of parameters and  

∈𝑡 ~𝑖𝑖𝑑𝑁(0, Σ) (Lama et al. 2016). The number of parameters to be estimated in the VAR 

model is  𝑘(1 + 𝑘𝑝)which increases with the number of variables (𝑘) and number of lags (𝑝). 

Illustrative Example: 

Here we have two variables: 

• 𝑌1: Delhi Tomato Price 

• 𝑌2: Lucknow Tomato Price 

A VAR(1) model would look like: 

𝑌1𝑡 = 𝑎10 + 𝑎11𝑌1(𝑡−1) + 𝑎12𝑌2(𝑡−1) + 𝑒1𝑡 

𝑌2𝑡 = 𝑎20 + 𝑎21𝑌1(𝑡−1) + 𝑎22𝑌2(𝑡−1) + 𝑒2𝑡 

Here, both variables are explained by each other’s past, without assuming which one is 

exogenous. 

In this system, both the Tomato prices are influenced by their own past values and by each 

other’s past values. Importantly, the model does not assume both causes price or vice versa in 

advance; instead, it lets the data determine the direction and strength of the interrelationships. 
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4. Steps in Building a VAR Model 

Building a VAR model involves a structured sequence of steps to ensure reliable estimation 

and forecasting. The first and most critical step is to check whether the time series data are 

stationary, as VAR models require stationary input. This is typically assessed using unit root 

tests such as the Augmented Dickey-Fuller (ADF) test. If any series is found to be non-

stationary, it must be transformed—most commonly through differencing—to achieve 

stationarity. 

Once stationarity is ensured, the next step is to determine the optimal lag length for the model. 

This is crucial because including too few lags may omit important dynamics, while too many 

can lead to overfitting. Lag selection is guided by information criteria such as the Akaike 

Information Criterion (AIC), the Bayesian Information Criterion (BIC), or the Hannan-Quinn 

Criterion (HQIC), which balance model fit with complexity. With the lag length decided, the 

VAR model is then estimated using Ordinary Least Squares (OLS) method. Each equation in 

the system is estimated separately, taking advantage of the fact that OLS remains efficient in 

this setup due to the identical regressors across equations. 

Finally, after the model has been estimated, it can be used to forecast future values of the 

variables. VAR models are particularly valuable when the time series under study influence 

each other, as they can capture and utilize these interdependencies in the forecasting process. 

5. Why Use VAR? 

VAR models are especially useful because they can capture the complex dynamic 

interdependencies among multiple time series. They are particularly well-suited for 

forecasting, policy analysis, and simulations. In applied research, VAR has been widely used 

in macroeconomic modeling (e.g., studying the relationship between inflation, interest rate, 

and GDP), in financial markets (e.g., modeling stock prices and returns), and in agriculture 

(e.g., analyzing the relationship between rainfall, fertilizer use, and crop yields). VAR provides 

a framework where researchers can model systems of equations without requiring strong 

assumptions about which variables are exogenous or endogenous. 
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6. Limitations 

Despite their flexibility, VAR models come with certain limitations. One major issue is that 

the model requires all variables to be stationary. Non-stationary series must be transformed, 

which may lead to loss of long-run relationships unless a cointegrated VAR (like VECM) is 

used. Another problem is the large number of parameters, especially as the number of variables 

and lag length increases. This can lead to overfitting, especially in small samples. Additionally, 

VAR models do not imply causality — just because one variable helps predict another does 

not mean it causes it. Therefore, further testing such as Granger causality is necessary to 

establish directional relationships. 

7. Tools for Implementation 

VAR models can be implemented using various statistical software. In R, the vars package is 

commonly used, which includes functions like VAR() for model, and for predict() for 

forecasting. In Python, the statsmodels.tsa.api.VAR module provides similar functionality. 

Both tools allow for comprehensive analysis and visualization of multivariate time series using 

the VAR framework. 

R Practical  

Data Used: 

• Source: Simulated or actual tomato price data from two Indian cities: 

o Tomato_Delhi.csv 

o Tomato_Lucknow.csv 

• Structure: Each CSV contains price data (assumed to be in column 2). 
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Stationarity Check (ADF Test): 

Performed using the adf.test() from the tseries package. 

Variable ADF Test Statistic p-value Stationarity 

y1 -6.7236 0.01 Stationary 

y2 -7.6918 0.01 Stationary 

Conclusion: Both series are stationary at 1% level, meaning no differencing is needed. 

VAR Estimation Results for y1 (Delhi): 

Equation: 

y1_t = 𝛽₁·y1_{t-1} + 𝛽₂·y2_{t-1} + 𝛽₃·y1_{t-2} + 𝛽₄·y2_{t-2} + constant 
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Coefficient Estimate p-value Significance 

y1.1 0.5426 0.000349 *** 

y2.1 0.1753 0.2252 Not Sig. 

y1.2 -0.6493 2.08e-05 *** 

y2.2 0.4359 0.0021 ** 

const 561.2837 6.85e-07 *** 

• Adjusted R²: 0.4484 

• F-statistic: Highly significant (< 2.2e-16) 

• Interpretation: Prices in Delhi are significantly influenced by their own lags and 

Lucknow’s second lag. 

VAR Estimation Results for y2 (Lucknow): 

Equation: 

y2_t = 𝛽₁·y1_{t-1} + 𝛽₂·y2_{t-1} + 𝛽₃·y1_{t-2} + 𝛽₄·y2_{t-2} + constant 

Coefficient Estimate p-value Significance 

y1.1 0.2449 0.0948 . (marginal) 

y2.1 0.6669 5.48e-06 *** 

y1.2 -0.6802 5.14e-06 *** 

y2.2 0.2808 0.0423 * 

const 698.3248 7.98e-10 *** 

• Adjusted R²: 0.5498 

• F-statistic: < 2.2e-16 

• Interpretation: Lucknow prices are strongly affected by Delhi’s 2nd lag and its own 

past values. 
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  Residual Diagnostics: 

• Residual Correlation: 

o y1 and y2: 0.8483 → Strong positive correlation between model residuals. 

• Covariance Matrix: Shows non-zero interaction between variables → joint modeling 

appropriate. 

Conclusion: 

• VAR modeling provides powerful insights into interconnected price behavior over 

space and time. 

• Strong spatial linkages suggest price transmission between Delhi and Lucknow. 

• This model can be extended to other crops and linked with climatic parameters to assess 

and forecast abiotic stress impacts. 
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1. Introduction 

A time series is a series of data points indexed (or listed or graphed) in time order. Most 

commonly, a time series is a sequence taken at successive equally spaced points in 

time. Functional data often arise from measurements obtained by separating an almost 

continuous time record into natural consecutive intervals, for example days. Functional time 

series consist of random functions observed at regular time intervals. Examples of functional 

time series whose sample elements are recorded sequentially over time are frequently 

encountered in many disciplines. For example, in demography and epidemiology, researchers 

observe age-specific mortality rate or fertility rate curves over many years, and are interested 

in forecasting future mortality/fertility rate curves. Functional time series consist of random 

functions observed at regular time intervals. The functions thus obtained from a timeseries {Xk, 

k є Z} where each Xk is a (random) function Xk(t), t є [a, b]. Functional data pertains to datasets 

in which each observation represents a function defined over a continuous domain. FDA deals 

with data that are naturally viewed as functions, such as curves or surfaces, and is crucial for 

analysing high-dimensional data efficiently.  

 A functional time series (FTS) arises when functional objects (curves) are collected 

sequentially over time. Functional time series (FTS) analysis is an emerging area in statistics 

designed for data where each observation is a function, such as daily or seasonal curves of crop 

yields, rather than a single value. Functional data analysis (FDA) arises naturally in this context 

to exploit the information recorded over a continuum such as time or space. In contrast to 

conventional scalar or multivariate data, functional data retains the complete functional 

characteristics of the observations, encompassing their shape, evolution, and variability. FDA 

is applied widely across fields such as medicine, finance, agriculture, and engineering, enabling 

more accurate predictions and insights by leveraging the functional nature of the data. 

Functional data analysis also involves estimating functional parameters describing data that are 

not themselves functional, and estimating a probability density function for rainfall data is an 

example. A theme in functional data analysis is the use of information in derivatives. 
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Why Use FTS? 

• Handles high-dimensional data efficiently 

• Reduces noise and enhances interpretability 

• Better suited for seasonal and long-term forecasting 

Functional Data Analysis (FDA) enables to model, analyse, and interpret continuous variation, 

uncovering patterns and relationships that traditional methods may miss. By representing data 

as functions, FDA allows for operations like differentiation, integration, and smoothing, which 

facilitate deeper exploration of data structure and variation. By extending time series analysis 

principles to functional data, FTS incorporates temporal dependencies and patterns that 

manifest both within and between these observed curves. Among the numerous existing 

contributions, one-step-ahead functional time series forecasting, that is, one-step-ahead 

prediction of a curve-valued time series, has been applied in several practical studies. Like 

many classical methods for time series forecasting, for example, those based on the Auto 

Regressive Integrated Moving Average (ARIMA) family models, the benchmark methods for 

FTS forecasting are based on fitting some statistical model of some approximated data 

generation. The most common is to fit ARIMA or Variational Auto Regressive (VAR) models 

to the Functional Principal Components Scores (FPC) of the functions, see Functional Auto 

Regressive (FAR) model. 

A FTS is considered (weakly) stationary if it satisfies two conditions: (i) the mean function, 

denoted as μt, remains independent of time, that is, μt = μ. (ii) The autocovariance operator at 

lag h, denoted as Ch, solely depends on the time distance and is represented as Ch := Ct,t+h = 

C0,h. 

Model using multivariate time series with as many dimensions as observations per year, such 

that every observation of the time series corresponds to the data collected during the entire 

year: Y(t) = (X(t,1), …, X(t,d)). But the dimension is very high (365 dimensions to be precise). 

We can reduce the dimension by reducing the frequency of the observations but we lose 

information. A final approach is to consider the data as a functional time series Y(t, x), where 

we have a function Y(.,x) for every year t with Y(t,i) = X(t,i). In this case, the yearly 

temperature is viewed as a function in time and every observation corresponds to a function, 

which describes the yearly temperature. 

https://arxiv.org/html/2404.16598v1
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A wide array of modelling approaches has been developed for FTS, reflecting the complexity 

and richness of functional data. These models are typically classified into several categories: 

• Parametric models, such as functional autoregressive (FAR) and functional moving 

average (FMA) models, which extend classical time series models to the functional 

domain by capturing linear temporal dependence between curves. 

• Nonparametric models, including kernel regression and smoothing methods, which 

make minimal assumptions about the underlying process and rely on data-driven 

techniques to capture complex dependencies. 

• Semiparametric models, which combine linear and nonlinear components to flexibly 

model both structured and unstructured variation in the data. 

• Dimension reduction and score-based models, where functional principal component 

analysis (FPCA) is used to extract key features (scores) from the curves, and these scores 

are then forecasted using standard time series methods. 

• Multivariate and grouped FTS models, which handle multiple related functional time 

series simultaneously, capturing both within- and between-group dependencies 

Daily temperature in Sydney from 

2013 to 2017; x-axis: time, y-axis: 

temperature in Celsius; 

 

Temperature in Sydney for 

different years; x-axis: time, y-

axis: temperature in Celsius; 
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Exploring Variability in Functional Data: 

Any data analysis begins with the basics: estimating means and standard deviations. 

Functional Principal Components Analysis: 

Goal of FPCA: 

▪ Reduce the infinite-dimensional functional data into a finite number of components. 

▪ Find a set of orthogonal basis functions (eigenfunctions) that capture the most 

variability. 

Optimal choice of the number of components K needed for the approximation which gives the 

best trade-off between bias and variance. 

There are several ad hoc procedures that are routinely applied in multivariate PCA, such as the 

scree plot or the fraction of variance explained by the first few PC components, which can be 

directly extended to the functional setting. 

Basis Function Systems for Constructing Functions 

We use a set of functional building blocks ∅(𝑘); k = 1; : : : ;K called basis functions, 

which are combined linearly. That is, a function x(t) defined in this way is expressed 

in mathematical notation as   

                                       𝑥(𝑡) = ∑ 𝑐𝑘  ∅𝑡(𝑡) = 𝑐
′ ∅(𝑡),𝐾

𝑘=1                     …………….(1) 

and called a basis function expansion. The parameters c1, c2 , . . . , cK are the coefficients 

of the expansion. We often want to consider a sample of N functions,  

𝑥(𝑡) = ∑ 𝑐1𝑘  ∅𝑘(𝑡),
𝐾
𝑘=1  i=1,2,3,…,N  and in this case matrix notation for (1) becomes 

                                                    x(t) = C∅(t);       

where x(t) is a vector of length N containing the functions xi(t), and the coefficient  

matrix C has N rows K columns. 

The notion of a basis system is hardly new; a polynomial such as x(t) = 18t4-2t3 +√17t2 + 

𝜋/2  is just such a linear combination of the monomial basis functions1; t; t2; t3; and t4 with 

coefficients 𝜋 /2, 0, √17, -2, and 18, respectively. Within the monomial basis system, the 

single basis function 1 is often needed by itself, and it the called as constant basis system. But 

polynomials are of limited usefulness when complex functional shapes are required. Therefore 
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we need heavy lifting two basis systems: Splines and Fourier Series. These two systems often 

need to be supplemented by the constant and monomial basis systems. 

For each basis system we need a function in either R or MATLAB to define a specific set of K 

basis functions ∅𝑘 . These are the create functions. Here are the calling statements of the create 

functions in R that set up constant, monomial, Fourier and spline basis systems, omitting 

arguments that tend only to be used now and then as well as default values: 

basisobj = create.constant.basis(rangeval) 

basisobj = create.monomial.basis(rangeval, nbasis) 

basisobj = create.fourier.basis(rangeval, nbasis, period) 

basisobj = create.bspline.basis(rangeval, nbasis, norder, breaks) 

rangeval argument specifies the lower and upper limits of the values of argument t and is a 

vector object of length 2. For example, if we need to define a basis over the unit interval [0;1], 

we would use a statement like rangeval = c(0,1). 

The second argument nbasis specifies the number K of basis functions. It does not appear in 

the constant basis call because it is automatically 1. 

Fourier Series for Periodic Data and Functions: 

Many functions are required to repeat themselves over a certain period T, as would be required 

for expressing a seasonal trend in a long time series. Fourier basis functions are arranged in 

successive sine/cosine pairs, with both arguments within any pair being multiplied by one of 

the integers 1, 2 ,3,….up to some upper limit m. If the series contains both elements of each 

pair, as is usual, the number of basis functions is K = 1+2m. 

Only two pieces of information are required to define a Fourier basis system: 

• the number of basis functions K and 

• the period T  

Example:  daybasis65 = create.fourier.basis(c(0,365), 65) 

Note that these function calls use the default of T =365, but if we wanted to specify some other 

period T, we would use     create.fourier.basis(c(0,365), 65, T)  

Spline Series for Nonperiodic Data and Functions: 
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Splines are piecewise polynomials. Spline bases are more flexible and therefore more 

complicated than finite Fourier series. They are defined by the range of validity, the knots, and 

the order. There are many different kinds of splines.  

Break Points and Knots: 

Splines are constructed by dividing the interval of observation into subintervals, with 

boundaries at points called break points or simply breaks. Over any subinterval, the spline 

function is a polynomial of fixed degree or order, but the nature of the polynomial changes as 

one passes into the next subinterval. The term degree to refer the highest power in the 

polynomial. The order of a polynomial is one higher than its degree. For example, a straight 

line is defined by a polynomial of degree one since its highest power is one, but is of order two 

because it also has a constant term. A spline basis is actually defined in terms of a set of knots. 

Order and Degree: 

Order four splines are often used, consisting of cubic polynomial segments (degree three), and 

the single knot per break point makes the function values and first and second derivative values 

match. 

To summarize, spline basis systems are defined by the following: 

• the break points defining subintervals, 

• the degree or order of the polynomial segments, and 

• the sequence of knots. 

The number K of basis functions in a spline basis system is determined by the relation  

            number of basis functions = order + number of interior knots 

By interior here we mean only knots that are placed at break points which are not either at the 

beginning or end of the domain of definition of the function. 

Example:  

13 order four B-splines corresponding to nine equally spaced interior knots over the interval 

[0;10], constructed in R by the command  

                       splinebasis = create.bspline.basis(c(0,10), 13) 
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The B-spline basis system has a property that is often useful: the sum of the B-spline basis 

function values at any point t is equal to one. 

Other Basis Systems 

The exponential basis, a set of exponential functions, exp(akt), each with a different rate 

parameter , and created with function   create.exponential.basis. 

²The polygonal basis, defining a function made up of straightline segments, and created with 

function   create.polygonal.basis. 

The power basis, consisting of a sequence of possibly non integer powers and even negative 

powers, of an argument t. These bases are created with the function create.power.basis. 

Methods for Functional Basis Objects: 

Basis evaluation functions   

                        basismatrix = eval.basis(tvec, mybasis)  

                        basismatrix = eval_basis(tvec, mybasis)  

where argument tvec is a vector of n argument values within the range used to define the basis, 

and argument mybasis is the name of the basis system that you have created. The resulting 

basismatrix is n by K.  

Adding Coefficients to Bases to Define Functions: 

Coefficient Vectors, Matrices and Arrays: 

Once we have selected a basis, we have only to supply coefficients in order to define an object 

of the functional data class (with class name fd). If there are K basis functions, we need a 

coefficient vector of length K for each function that we wish to define. If only a single function 

is defined, then the coefficients are loaded into a vector of length K or a matrix with K rows 

and one column. If N functions are needed, say for a sample of functional observations of size 

N, we arrange these coefficient vectors in a K by N matrix. 

Example: coefficients for mean temperature for each of the 35 weather stations organized into 

the 65 by 35 matrix coefmat: 
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                                tempfd = fd(coefmat, daybasis65) 

Labels for Functional Data Objects: 

Adding labels to functional data objects is a convenient way to supply the information needed 

for graphical displays.  

                                fdnames = vector("list", 3) 

Methods for Functional Data Objects: 

As for the basis class, there are similar generic functions for printing, summarizing 

and testing for class and identity for functional data objects. 

There are, in addition, some useful methods for doing arithmetic on functional 

data objects and carrying out various transformations. For example, we can take the 

sum, difference, power or pointwise product of two functions with commands like 

fdsumobj = fdobj1 + fdobj2 

fddifobj = fdobj1 - fdobj2 

fdprdobj = fdobj1 * fdobj2 

fdsqrobj = fdobjˆ2 

The mean of a set of functions is achieved by a command like 

fdmeanobj = mean(fdobj) 

Smoothing Using Regression Analysis: 

The Linear Differential Operator or Lfd Class: 

The concept of a “derivative” could itself be extended by proposing linear combinations of 

derivatives, called linear differential operators. 

 Smoothing is supported using the Lfd class that expresses the concept of a linear differential 

operator. An important special case is the harmonic acceleration operator that we will use 

extensively with Fourier basis functions to smooth periodic data. 

Regression Splines: Smoothing by Regression Analysis 

When smoothing function x is defined as a basis function expansion (3.1), the least squares 
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estimation problem becomes 

  SSE(c) =  ∑ [𝑦𝑗 − ∑ 𝑐𝑘
𝐾
𝑘

𝑛
𝑗 ∅𝑘(𝑡𝑗)]

2 = ∑ [𝑦𝑗 −
𝑛
𝑗 ∅(𝑡𝑗)𝑐]

2 

The least  squares estimation process can be defended on the grounds that it tends to give nearly 

optimal answers relative to “best” estimation methods so long as the true error distribution is 

fairly short-tailed and departures from the other assumptions are reasonably mild. 

Data Smoothing with Roughness Penalties: 

The roughness penalty approach uses a large number of basis functions, possibly extending to 

one basis function per observation and even beyond, but at the same time imposing smoothness 

by penalizing some measure of function complexity. 

Choosing a Roughness Penalty: 

We define a measure of the roughness of the fitted curve, and then minimize a fitting criterion 

that trades off curve roughness against lack of data fit. Whatever roughness penalty we use, we 

add some multiple of it to the error sum of squares to define the compound fitting criterion. 

                     𝐹(𝑐) = ∑ [𝑦𝑗𝑗 − 𝑥(𝑡𝑗)]
2 + 𝜆∫[𝐷2𝑥(𝑡)]2dt 

where x(t) = 𝑐′ ∅(𝑡). The smoothing parameter  𝜆 specifies the emphasis on the second term 

penalizing curvature relative to goodness of fit quantified in the sum of squared residuals in 

the first term. As 𝜆 moves from 0 upward, curvature becomes increasingly penalized. With l 

sufficiently large, D2(x) will be essentially 0. 

Details of fdPar Class and smooth.basis Function: 

The fdPar class:  

fdPar(fdobj=NULL, Lfdobj=NULL, lambda=0, estimate=TRUE, penmat=NULL) 

The arguments are as follows: 

fdobj  A functional data object, functional basis object, a functional parameter object or 

a matrix. If it a matrix, it is replaced by fd(fdobj). If class(fdobj) == ’basisfd’, it 

is  converted to an object of class fd with a coefficient matrix consisting of a single        column 

of zeros. 

Lfdobj   Either a nonnegative integer or a linear differential operator object. If NULL, Lfdobj 
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          depends on fdobj[[’basis’]][[’type’]]: bspline Lfdobj = int2Lfd(max(0, norder-2)), 

           where  norder = norder(fdobj). 

fourier Lfdobj is a harmonic acceleration operator set up for the period used to define the 

basis. anything else Lfdobj <- int2Lfd(0) 

lambda:  A nonnegative real number specifying the amount of smoothing to be applied to the 

estimated functional parameter estimate. 

penmat: A roughness penalty matrix. Including this can eliminate the need to compute this 

matrix over and over again in some types of calculations 

Exploring the Variation:  

Functional Principal Component Analysis: 

In functional PCA, there is an eigenfunction associated with each eigenvalue, rather than an 

eigenvector. These eigenfunctions describe major variational components. Applying a rotation 

to them often results in a more interpretable picture of the dominant modes of variation in the 

functional data, without changing the total amount of common variation. 

Principal component analysis is implemented in the functions pca.fd in R. 

pca.fd(fdobj, nharm = 2, harmfdPar=fdPar(fdobj), centerfns = TRUE) 

The first argument is a functional data object containing the functional data to be analysed, and 

the second specifies the number of principal components to be retained. The third argument is 

a functional parameter object that provides the information necessary to smooth the 

eigenfunctions if necessary. 

Function pca.fd in R returns an object with the class name pca.fd, so that it is effectively a 

constructor function. Here are the named components for this class. 

harmonics A functional data object for the ` harmonics or eigenfunctions xj. values. The 

complete set of eigenvalues m j. scores    The matrix of scores ci j on the principal components 

or harmonics. Varprop  A vector giving the proportion 𝜇𝑗/∑𝜇j of variance explained by each 

eigenfunction. 

meanfd   A functional data object giving the mean function. 

Tests on Stationarity and Independence 

In time series analysis, two functional observations are considered independent if their joint 

probability can be expressed as a product of individual probabilities. A time series is deemed 
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stationary when its statistical properties, such as distribution, remain unchanged over time. For 

functional data analysis, stationarity can be assessed using the CUSUM (Cumulative Sum) 

statistic, which helps in identifying weak stationarity. To test the assumption of independence, 

a Portmanteau-type test is commonly employed, allowing researchers to confirm or refute the 

null hypothesis of independence. 

Testing for weak stationarity 

In time series analysis, assessing stationarity is a fundamental step, as it determines whether 

temporal dynamics must be explicitly modeled. A stationary time series is one whose statistical 

properties remain constant over time, implying that its behavior is predictable and consistent. 

When a series is stationary, we do not need to adjust for time-dependent structural changes, 

thereby simplifying the modeling process. 

However, stationarity is inherently difficult to assess directly, especially when working with 

finite samples. As a practical alternative, researchers often evaluate statistical moments—such 

as the mean, variance, and autocovariance structure—to serve as proxies. The underlying 

intuition is that if these moments remain constant over time, the distribution of the time series 

can be assumed to be time-invariant, and hence, the process is likely to be stationary. 

Consequently, rather than testing for strict stationarity, it is common to test for weak (or 

second-order) stationarity, which requires that the mean, variance, and autocovariances are not 

functions of time. If these conditions are satisfied, the time series is considered weakly 

stationary and suitable for many traditional time series modeling approaches such as ARIMA, 

VAR, or STARMA.  

For a functional time series Y(1)(x), Y(2)(x), …, Y(n)(x), this translates into the hypotheses 

                    

for some i ∈ { 2, … , n } and 

                              

for some i ∈ { 2, … , n-h}. 
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The time series Y(i) is weakly stationary if the null hypotheses are valid for any positive 

integer h. Note that the first- and second-order moments of Y(i) are functions themselves. So 

equality of two functions depends on the function space. In the space of continuous functions, 

for example, two functions f and g are equal if they are equal in any point x, so if f(x)=g(x). 

Contrarily, two functions are equal in the space of square-integrable functions L² if they 

coincide in almost every point (w.r.t. the Lebesgue measure). 

As in the univariate scenario, we can employ the CUSUM statistic, which basically compares 

the average of the first with the average of the remaining observations. The (functional) 

CUSUM statistic is defined as 

                                              

Under the null hypothesis (and weak assumptions), √n C(u, x) converges weakly to a centered 

Gaussian process B(u, x) with unknown covariance function in the space L²([0,1]²) with 

norm ||.||₂. Contrarily, √n C(u, x) deviates to +∞ or -∞ under the alternative. So if √n C(u, 

x) deviates too much from its limit B(u, x), we can reject H₀. 

A Portmanteau-type test 

Just as with stationarity, assessing stochastic independence directly is challenging, so we rely 

on the autocovariance structure of the time series as a proxy to evaluate the extent of its 

dependence. For analytical convenience, it is assumed that the time series is both stationary 

and mean-centered, i.e., E[Y(i)]=0 . This assumption can be verified using a procedure similar 

to the one described. The primary focus remains on autocovariances at lower lags h. In 

alignment with the classical Portmanteau test framework, the following hypotheses are 

considered: 

                  

As before, the second order moments of a functional time series are functions themselves, so 

we formulate the hypotheses in terms of their norms. 

import pandas as pd 

import numpy as np 

from scipy.signal import correlate2d 
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df = pd.read_csv('Sydney.csv')  # Load data set 

df.interpolate(inplace=True)     # Impute missing values 

df.drop(df.columns[[0,1,6,7]],axis=1,inplace=True)   # Drop unused columns 

df = df[df['Year']<2018]    # Drop observations from 2018 

# Restructure data: rows correspond to different observations, columns are the different days 

df = df.pivot(index='Year', columns=['Month','Day'], values='Minimum temperature (Degree 

C)') 

df.drop((2, 29), axis=1, inplace=True)  # Drop 29th of February 

df.index = df.index - min(df.index)   # Change index 

 

Testing for stationarity of the mean: 

In order to test for stationarity of the mean, we define three auxiliary functions to calculate the 

CUSUM statistic, the _L²-_norm and bootstrap replicates to approximate the quantile. 

def calculate_cusum(X): 

    n = X.shape[0] 

    X_cusum = ( np.cumsum(X) - np.tensordot(np.arange(1,n+1)/n, np.sum(X), axes=0) ) / n 

    return X_cusum 

def calculate_l2_norm(X): 

    l2_norm = np.sqrt((X**2).mean()) 

    return l2_norm 

def generate_bootstrap_replicate(X): 

    n, d = X.shape 

    random_multipliers = np.random.randn(n) 

    # Calculate local mean 

    kernel = np.ones(2*bw+1).reshape((2*bw+1,1)) 

    conv_loc_mean = correlate2d(X,kernel,mode='full')[bw:-bw] 

    weights = 1/np.convolve(np.ones(2*bw+1), np.ones(conv_loc_mean.shape[0]))[bw:-bw] 

    local_mean = np.multiply(conv_loc_mean, weights[:, np.newaxis]) 

    # Calculate bootstrap replicate 

    conv_arr = correlate2d(X - local_mean,np.ones(m).reshape((m,1)),mode='full')[m-1:]/     

     np.sqrt(m) 

    scalar_prod = np.multiply(conv_arr, random_multipliers[:, np.newaxis]) 

    bootstrap_replicate = scalar_prod.cumsum(axis=0)/np.sqrt(n) 

    l2_norm = calculate_l2_norm(bootstrap_replicate)  

    return l2_norm   

 n = df.shape[0] 

test_statistic = np.sqrt(n) * calculate_l2_norm(calculate_cusum(df).to_numpy()) 

m = 5 

bw = 25 

K = 1000 

alpha = 0.05 
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bootstrap_replicates = np.zeros(K) 

for k in range(K): 

    bootstrap_replicates[k] = generate_bootstrap_replicate(df) 

quantile_approx = np.sort(bootstrap_replicates)[round((1-alpha)*K)] 

print('Test Statistic: ' + str(round(test_statistic,3))) 

print('Approximated quantile: ' + str(round(quantile_approx,3))) 

if test_statistic > quantile_approx: 

    print('The null hypothesis can be rejected') 

else: 

   print('The null hypothesis cannot be rejected') 

 
✓ Test Statistic: 2.11 

✓ Approximated quantile: 1.84 

✓ The null hypothesis can be rejected 

✓ The output suggests that we can reject the null hypothesis of a constant mean function. 

Thus, it is unlikely that the temperature was stationary in Sydney from 1859 to 2017, 

which suggests a change in climate. 

Forecasting Methods 

 

Functional Auto Regressive Moving Average Method: 

Research in functional data analysis has led to functional ARIMA (FARIMA) models, which 

generalise ARIMA concepts to infinite-dimensional settings. These models are mathematically 

more complex and typically require specialised statistical software and expertise. 

Key Steps in Practice: 

1. Preprocessing: Ensure each function is well-defined and aligned (e.g., same domain, 

normalisation). 

2. Dimension Reduction: Use FPCA or similar techniques to reduce each function to a 

set of scalar scores. 

3. Stationarity Check: Check and, if necessary, difference the score series to achieve 

stationarity. 

4. Model Fitting: Fit ARIMA models to each principal component score series. 

5. Forecasting: Predict future scores using the fitted ARIMA models. 

6. Reconstruction: Combine the predicted scores with the principal components to 

reconstruct the forecasted function. 
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Approach Description 

FPCA + ARIMA on Scores Reduce functions to scores, fit ARIMA, reconstruct functions 

Nonparametric/Projection 

Methods 

Use projections or nonparametric techniques for curve 

forecasting 

 
 

R code for Functional ARIMA: 

 
required_packages <- c("lubridate", "forecast", "fda", "fda.usc","dplyr","tidyr","readxl", 

                       "ggpplot2","ftsa","funtimes","STFTS") 

install_if_missing <- function(packages) { 

  new_packages <- packages[!(packages %in% installed.packages()[, "Package"])] 

  if(length(new_packages)) { 

    install.packages(new_packages, dependencies = TRUE) 

  } 

} 

# Install missing packages 

install_if_missing(required_packages) 

library(readxl) 

library(dplyr) 

library(tidyr) 

library(lubridate) 

library(fda) 

library(ftsa) 

library(ggplot2) 

library(data.table) 

library(fda.usc) 

library(forecast) 

library(funtimes) 

library(STFTS) 

# Set working directory (assuming the file is there) 

setwd("C:/Users/pc/Downloads/")  

# Load the Excel file and sheet 

df <- read_excel("Tomato.xlsx", sheet = 1) 

# Data Cleaning and Preparation for Functional Data 

df$date <- as.Date(df$Date, format="%Y-%m-%d") 

df_processed <- df %>% 

  mutate( 

    year = year(Date), 

    day_of_year = yday(Date) 

  ) %>% 

  filter(year %in% 2018:2024) # Filter for the specific years 2018-2024 

# Reshape to matrix: Years as rows, Days of Year as columns 

arrival_matrix_daily <- df_processed %>% 

  pivot_wider( 
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    id_cols = year, 

    names_from = day_of_year, 

    values_from = Arrivals, 

    values_fn = mean, # Use mean in case of multiple entries per day/year 

    names_sort = TRUE 

  ) %>% 

  arrange(year) 

rownames(arrival_matrix_daily) <- arrival_matrix_daily$year 

arrival_matrix_daily <- arrival_matrix_daily %>% 

  dplyr::select(-year) %>% 

  as.matrix() 

print("Dimensions of initial arrival_matrix_daily (Years x Days):") 

print(dim(arrival_matrix_daily)) 

# Likely 7x366 if 2020 or 2024 is present 

# Remove the last column if there's a 366th day (leap year) to make it consistent 

# This assumes you want a 365-day domain for all functions 

if (ncol(arrival_matrix_daily) > 365) { 

  arrival_matrix_daily <- arrival_matrix_daily[, 1:365] 

} 

print("Dimensions after removing possible 366th day (Years x Days):") 

print(dim(arrival_matrix_daily))  # Should now be 7x365 

# Define evaluation points (days 1 to 365) 

argvals <- 1:ncol(arrival_matrix_daily) 

rangeval <- range(argvals) 

 

# Create Fourier basis 

nbasis <- 21  

fourier_basis <- create.fourier.basis(rangeval = rangeval, nbasis = nbasis) 

 

# Smooth the data to create functional data objects (7 functions) 

fd_smooth <- smooth.basis(argvals = argvals, y = t(arrival_matrix_daily), fdParobj = 

fourier_basis)$fd 

plot(fd_smooth,main="Smoothened functions") 

print("Number of functional observations after smoothing:") 

print(length(fd_smooth$coefs[1,])) # Should be 7 

fd_matrix <- eval.fd(eval_points, fd_smooth) 

print("Dimensions of evaluated functional data matrix (Days x Years):") 

print(dim(fd_matrix)) # Should be 365x7 

fts_obj <- fts(eval_points, y = fd_matrix) 

print("Number of functional observations in fts object:") 

print(dim(fts_obj$y)[2])  

spatial_diff2_matrix <- apply(fd_matrix, 2, diff, differences = 1) 

print(dim(spatial_diff2_matrix)) 

spatial_argvals <- argvals[-(1:2)] # Remove the first two points 

result_spatial_diff2 <- T_stationary( 

  sample = spatial_diff2_matrix, # Pass the 363x7 matrix 

  L = 21,               # Number of basis functions (adjust based on 363 domain?) 

  J = 500,              # Truncation level (adjust based on 363 domain?) 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 88 - 
 

  MC_rep = 1000,        # Number of Monte Carlo replications 

  cumulative_var = 0.90,# Variance explained for dimension reduction within  

  Ker1 = FALSE, 

  Ker2 = TRUE, 

  h = ncol(spatial_diff2_matrix)^0.5, # Default h calculation is correct for N=7 

  pivotal = FALSE, 

  use_table = FALSE, 

  significance = "5%" 

) 

cat("\nStationarity test p-value for the SECOND SPATIAL DIFFERENCE:", 

result_spatial_diff2$p.value, "\n") 

class(spatial_diff2_matrix) #"matrix" "array"  

train_matrix <- spatial_diff2_matrix[, 1:6]  # 363 x 6 

test_matrix  <- spatial_diff2_matrix[, 7, drop = FALSE] 

spatial_argvals <- 1:nrow(spatial_diff2_matrix)  # 1:363 

fts_train <- fts(spatial_argvals, y = train_matrix) 

fts_test  <- fts(spatial_argvals, y = test_matrix) 

# Fit model to training data 

fit_model <- ftsm(fts_train) 

# Forecast the next curve (test year) 

fc <- forecast(fit_model, h = 1,method = "arima") 

 

Conclusion: 

 In the present study, relevant techniques were applied to develop a functional ARIMA model 

for forecasting Tomato Arrivals. The comparison study revealed that FARIMA outperforms 

classical ARIMA model in forecasting Tomato Arrivals. 
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Introduction 

Trend Impact Analysis (TIA) is an advanced forecasting technique that extends traditional time 

series analysis by explicitly accounting for the potential effects of unexpected or external 

events, known as interventions on an existing trend. Unlike purely statistical extrapolation 

methods, which assume that past patterns will continue unchanged, trend impact analysis 

recognizes that real-world time series are often disrupted by unforeseen forces such as policy 

changes, economic shocks, technological innovations, natural disasters, pandemics, or other 

rare but influential events. In agricultural and environmental sciences, trend impact analysis is 

especially important because external interventions; like the introduction of a new crop variety, 

sudden pest outbreaks, extreme weather events, or government policy reforms can dramatically 

alter the trajectory of production, prices, or yields. By combining quantitative time series 

models with structured expert judgment or explicit intervention variables, TIA provides a 

practical way to integrate both historical data and anticipated future disruptions into 

forecasting. The core idea of trend impact analysis is to identify the point of intervention, 

measure its effect on the mean level or trend of the series, and model the pattern of this impact 

over time. This can be achieved through parametric statistical methods such as the ARIMA 

Intervention Model, where the intervention is built directly into the ARIMA framework by 

adding an intervention component with appropriate indicator variables. Depending on the 

nature of the event, the effect may be immediate and temporary (pulse), sudden and permanent 

(step), or gradual but increasing (ramp). 

Trend impact analysis is widely used in agricultural research, social sciences, economics, and 

policy planning to assess the consequences of unique events on production, market dynamics, 

supply chains, or resource use. It not only provides more realistic forecasts but also helps 

decision-makers understand possible future scenarios under different assumptions.  In modern 

applications, trend impact models can also be combined with machine learning techniques, 
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such as Artificial Neural Networks (ANNs) and hybrid approaches, to capture non-linear 

patterns and complex interactions when interventions occur. This lecture note introduces the 

ARIMA Intervention Model, explains its components, types of interventions, coding of 

indicator variables, and demonstrates how it can be implemented using open-source tools like 

the forecast package in R. It also touches on advanced extensions, such as the NARX 

(Nonlinear Autoregressive Model with Exogenous Inputs), which integrates intervention 

effects into neural network frameworks for more flexible modeling of dynamic systems 

impacted by external forces. 

Trend Impact Analysis plays an important role in understanding and forecasting climatic 

variables that are often disrupted by unexpected natural events or human activities. Climate 

time series such as rainfall, temperature, drought indices, or humidity can show abrupt changes 

due to phenomena like extreme weather events, major floods, prolonged droughts, or policy 

actions like large-scale afforestation or emission reduction programs. By applying the ARIMA 

Intervention Model, researchers can identify when such interventions or events occur and 

measure how they shift the mean level or trend of a climatic variable over time. For more 

complex and nonlinear climate dynamics, the NARX (Nonlinear Autoregressive Model with 

Exogenous Inputs) is useful for modeling situations where the impact of an external factor 

unfolds in a nonlinear way. For example, gradual land use change, deforestation, or changes in 

irrigation patterns may have delayed and nonlinear effects on local temperature and rainfall. 

By combining lagged climate variables with external drivers, the NARX model captures these 

intricate relationships, helping researchers develop better forecasts and design climate 

adaptation strategies. 

ARIMA Intervention Model 

ARIMA Intervention model was developed by Box and Tiao (1975). Time series 

intervention analysis is an application of modelling procedures for incorporating the effect of 

exogeneous forces or interventions in time series analysis. This intervention can be government 

policies, strikes, earthquakes, price changes, floods, pandemic and other irregular events. It 

causes unusual changes in time series. So, simply we can say that intervention analysis in time 

series refers to the analysis of how mean level of a series change after an intervention. An 

intervention model is given by 
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    𝑌𝑡 =
𝜔(𝐵)

𝛿(𝐵)
𝐵𝑏𝐼𝑡 +

𝜃(𝐵)

𝜙(𝐵)
𝜀𝑡                                                                               

      Yt = [Intervention component] * It + ARIMA model 

Where Yt =dependent variable 

It = indicator variable coded according to the type of intervention. 

(B) = 1+ 1 B +… r B
r – slope parameter.                                                      

 (B)= 0+ 1 B +… s B
s – impact parameter.                                                

(B) = 1- 1 B- 2B
2 - …- p B

p- Autoregressive parameter.                              

 (B) = 1- 1 B- 2B
2-… - q B

q – Moving average parameter.                         

  b = delay parameter, B=Backshift operator i.e. Ba Yt =Yt-a, t = White noise or error term. 

Types of Intervention  

Time series interventions are broadly classified as step intervention, pulse/point 

intervention and ramp intervention based on nature and duration of interventions effects.  

Step intervention: 

 It happens at a certain point of time and continues to exists in the subsequent time 

periods. The step intervention’s impact may remain constant over time, or it may increase or 

decrease. this type of intervention occurs in agriculture when a new variety, pesticide, or 

economic policy is introduced.  

Pulse Intervention 

 It happens only for a short period of time, but the impact of these type of intervention 

can last only for that time period or may last for a longer period of time. For example; in 

agriculture these types of interventions are seen where there is an extreme drought, flood, or 

insect-pest infestation.  

Ramp Intervention 
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It happens at a specific point in time and continues to exist with rising severity in the 

subsequent time periods. The impact of this action will continue to increase over time. For 

example, the price of agricultural commodity increases over a period of time. 

Indicator variables: 

 The range of values that an intervention variable can take is generally determined by 

the type of intervention. For step intervention 

 It = 0, t  T, 1, t  T                     

Where T is the time of intervention when it is first occurred. 

For Pulse intervention 

 It = 0, t T 

                 1, t = T    

For Ramp intervention  

 It = 0, t  T 

               t-T+1, t  T     

The Table 3.3 shows an example of indicator coding for types of interventions, 

assuming that the intervention took place at 4th time point. Fitting the intervention model 

follows the same three steps as the ARIMA model i.e. identification, estimation, diagnostic 

checking.  

The “forecast” package (Hyndman et al. 2008) in R software was used to build for 

ARIMA intervention model. The intervention parameter indicates the change, either the impact 

is positive, negative or no impact due to occurrence and spread of covid -19 pandemic. A model 

was considered valid when all the coefficients were significant and the residuals were found to 

be non-autocorrelated by means of Ljung-Box test. For selection of suitable candidate models, 

the loglikelihood value, minimum Akaike Informative Criteria (AIC) and Bayesian 

Informative Criteria (BIC) were used to select the best model. 

 Table: Values of intervention variable under different functions  

       Time t Step intervention It Pulse intervention It Ramp intervention It 
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1 0 0 0 

2 0 0 0 

3 0 0 0 

4= T 1 1 1 

5 1 0 2 

6 1 0 3 

7 1 0 4 

8 1 0 5 

 

Neural Network Intervention Model 

  The Nonlinear autoregressive exogeneous model is a recurrent dynamic neural 

network. The model works same as Artificial Neural Networks (ANN) with exogenous 

variables which is discussed below. Lagged values of the intervention variable were considered 

as exogeneous variables. Since we have used intervention component in ANN, which is 

nomenclature as ANN Intervention model henceforth (Vega et al 2001).  The classical ANN 

model allows making forecasts based on only past values of the forecast variable. The model 

assumes that future values of a variable depend on its past values, as well as on the values of 

past exogeneous variables. The ANN Intervention model is an extended version of the ANN 

model, where it includes other independent (predictor) variables called as intervention variable, 

the model is also referred to as the vector ANN model.  

ANN forecasting models typically assume that each observed value is an unknown 

nonlinear function F of c lags t1, t2, …, tc, for a given univariate time series {xt, t = 1,2, …, 

n}, where xt ϵ R, 

                                  xt = F (xt-t1, xt-t2, …, xt-tc) + t                                                  

Where the error t is error of zero mean. Next, we assume that m interventions have 

been observed throughout time periods r1, r2, …, rm.  Depending on the nature of the 

interventions., we define m auxiliary variables 1
t, 2

t, …, m
t. As a result, we can investigate 

a nonlinear forecasting model with c lags t1, t2, …, tc and m interventions; 

                   xt = F (xt-t1, xt-t2, …, xt-tc , 1
t, 2

t, …,m
t) + t                            
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Fig.: Diagram of ANN with Intervention variable 

`Illustration 

The time series intervention model based TIA has been employed for envisioning crop yield scenarios 

for maize, potato, rice, tomato, okra, cabbage, mustard yield. 

 

Table1: Parameters for Maize Yield Scenario 

Initial Impact 

(percentage) 

10 

Maximum Impact 

(percentage) 

25 

Steady State  Impact 

(percentage) 

20 

Time to maximum impact 

(year) 

7 
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Time to steady state impact 

(year) 

15 

Unprecedented technology Bt Maize 

 

 

Fig : Maize yield scenarios 

Table2: Parameters for Potato Yield Scenario 

Initial Impact 

(percentage) 

5 

Maximum Impact 

(percentage) 

20 

Steady State Impact 

(percentage) 

13 

Time to maximum impact (year) 5 
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Time to steady state impact (year) 8 

Unprecedented technology Transgenic potato 

 

 

Fig 4: Potato yield scenarios 

Table: Parameters for Rice Yield Scenario 

 

Initial Impact 

(percentage) 

7 

Maximum Impact 

(percentage) 

20 

Steady State  Impact 

(percentage) 

18 
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Time to maximum impact (year) 7 

Time to steady state impact (year) 15 

Unprecedented technology Golden Rice 

 

 

Fig.: Rice yield scenarios 

Table4: Parameters for tomato Yield Scenario 

Initial Impact 

(percentage) 

6 

Maximum Impact 

(percentage) 

10 

Steady State  Impact 

(percentage) 

9 

Time to maximum impact (year) 5 

Time to steady state impact (year) 10 
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Unprecedented technology Transgenic tomato 

 

  

Fig.: Tomato yield scenarios 

Table: Parameters for okra Yield Scenario 

Initial Impact 

(percentage) 

2 

Maximum Impact 

(percentage) 

10 

Steady State Impact 

(percentage) 

7 

Time to maximum impact (year) 10 

Time to steady state impact (year) 5 

Unprecedented technology Transgenic okra 
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Fig .: Okra yield scenarios 

Table: Parameters for Cabbage yield Scenario 

Initial Impact 

(percentage) 

4 

Maximum Impact 

(percentage) 

15 

Steady State  Impact 

(percentage) 

12 

Time to maximum impact (year) 8 

Time to steady state impact (year) 10 

Unprecedented technology Transgenic cabbage 
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Fig: Cabbage yield scenarios 

Table : Parameters for Mustard yield Scenario 

Initial Impact 

(percentage) 

30 

Maximum Impact 

(percentage) 

50 

Steady State  Impact 

(percentage) 

45 

Time to maximum impact (year) 3 

Time to steady state impact (year) 10 

Unprecedented technology Bt Mustard 
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Fig 9: Mustard yield scenarios 

Conclusion 

In this study, by integrating Delphi, GOS tree and time series intervention-based TIA a 

methodology has been proposed for envisioning crop yield scenarios. The proposed approach 

has been employed for envisioning crop yield scenarios of maize, potato, rice, tomato, okra, 

cabbage, mustard at All-India level considering the impact of Bt technology. 

Trend Impact Analysis (TIA) offers a valuable extension to classical time series forecasting 

methods by explicitly integrating the effects of unexpected interventions or exogenous forces 

that can significantly alter the trajectory of a variable of interest. Unlike traditional time series 

models that assume continuity of past trends, intervention-based models like the ARIMA 

Intervention Model and its nonlinear counterpart, NARX, help capture the real impact of 

sudden or gradual external events, resulting in more realistic and actionable forecasts. 

In this study, by combining structured expert judgment (Delphi), GOS tree analysis, and time 

series intervention modeling, a robust TIA framework was developed for envisioning future 

crop yield scenarios. This integrated approach was successfully applied to major crops — 

including maize, potato, rice, tomato, okra, cabbage, and mustard at the All-India level to assess 

the impact of Bt technology adoption. The results demonstrated that the trend intervention-

based models consistently outperformed classical time series models in capturing shifts caused 
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by technological interventions, providing more accurate and policy-relevant insights for 

agricultural planning and technology foresight. 

These findings highlight that TIA, especially when combined with hybrid modeling techniques 

and expert inputs, can serve as an effective decision-support tool for researchers, policymakers, 

and planners to understand possible future scenarios and design resilient strategies in the face 

of climatic and technological disruptions. 

R codes: 

rm(list=ls()) 

library(forecast) 

library(tseries) 

library(TSA) 

library(ggplot2) 

library(tidyverse) 

library(lmtest) 

g=read.table(file="Gudumalkapur.txt",header=T) 

head(g) 

dim(g) 

Box.test(g$Arrivals) 

bdsTest(g$Arrivals, m = 3, eps = NULL, title = NULL, description = NULL) 

a1=g$Arrivals[1:2856] 

a2=g$Arrivals[2857:2887] 

i1=g$Int[1:2856] 

i2=g$Int[2857:2887] 

Box.test(a1) 

acf(a1) 

pacf(a1) 

############# ARIMA Fitting ######### 

m1=auto.arima(a1) 

coeftest(m1) 

accuracy(m1) 

Box.test(m1$residuals) 

fitted1=m1$fitted 

write.csv(as.data.frame(fitted1), file="ARIMA_Fitted.csv") 

f1=forecast(m1, h=30) 

f11=data.frame(f1) 

f12=f11$Point.Forecast 

mape1=abs(a2-f12)/abs(a2) 

mape11=mean(mape1)*100 

mape11 

write.csv(as.data.frame(f12), file="ARIMA_Forecasted.csv") 

################### ANN ########## 

m2=nnetar(a1,2, P=1, 5, repeats=25, xreg=NULL, lambda=NULL, model=NULL, 

subset=NULL, scale.inputs=TRUE,  maxit=150) 
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m2 

accuracy(m2) 

fitted2=m2$fitted 

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv") 

Box.test(m2$residuals) 

f2=forecast(m2, h=30) 

f21=data.frame(f2) 

f22=f21$Point.Forecast 

mape2=abs(a2-f22)/abs(a2) 

mape21=mean(mape2)*100 

mape21 

write.csv(as.data.frame(f22), file="ANN_Forecasted.csv") 

############# ARIMA Int ########### 

m3=auto.arima(a1, xreg=i1) 

coeftest(m3) 

accuracy(m3) 

fitted3=m3$fitted 

write.csv(as.data.frame(fitted3), file="ARIMA_Int_Fitted.csv") 

Box.test(m3$residuals) 

f3=forecast(m3, h=30, xreg=i2) 

f31=data.frame(f3) 

f32=f31$Point.Forecast 

mape3=abs(a2-f32)/abs(a2) 

mape31=mean(mape3)*100 

mape31 

write.csv(as.data.frame(f32), file="ARIMA_Int_Forecasted.csv") 

############ ANN_Int########## 

m4=nnetar(a1,2, P=1, 5, repeats=25, xreg=i1, maxit=150) 

m4 

accuracy(m4) 

fitted4=m4$fitted 

write.csv(as.data.frame(fitted4), file="ANN_Int_Fitted.csv") 

Box.test(m4$residuals) 

f4=forecast(m4, h=30, xreg=i2) 

f41=data.frame(f4) 

f42=f41$Point.Forecast 

mape4=abs(a2-f42)/abs(a2) 

mape41=mean(mape4)*100 

mape41 

write.csv(as.data.frame(f42), file="ANN_Int_Forecasted.csv") 

##########Significance Comparison ########## 

########## For testing set ###### 

dm.test(m1$residuals, m2$residuals) 

dm.test(m1$residuals, m3$residuals) 

dm.test(m1$residuals, m4$residuals) 

dm.test(m2$residuals, m3$residuals) 

dm.test(m2$residuals, m4$residuals) 

dm.test(m3$residuals, m4$residuals) 
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######## You have to do it for testing set also ##### 
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1. Introduction 

In econometrics, cointegration analysis is a powerful tool used to estimate and test long-run 

equilibrium relationships among non-stationary time series variables such as income and 

consumption, interest rates of different maturities, or stock prices. Its primary significance lies 

in its ability to address challenges posed by the use of non-stationary data, which is common 

in macroeconomic and financial time series. When two or more non-stationary series are 

cointegrated, they share a common stochastic trend, indicating the existence of a meaningful 

long-term relationship, despite short-term deviations. 

A time series is considered stationary when its mean and variance remain constant over time, 

and the covariance between values depends only on the lag between time points, not on the 

actual time at which the covariance is computed. In contrast, non-stationary series exhibit time-

varying means or variances, complicating statistical inference and model validity. Therefore, 

econometric models dealing with such series must be carefully specified to yield valid 

economic interpretations. 

To address non-stationarity, a common approach is to apply differencing, which transforms a 

trending series into a stationary one. The number of differencing steps required to achieve 

stationarity defines the order of integration. A series that becomes stationary after first 

differencing is termed integrated of order one, denoted as I(1), while a stationary series without 

differencing is I(0). 

Cointegration analysis allows researchers to identify and model long-run relationships without 

discarding essential information, unlike traditional approaches such as regression on first-

differenced data, which may lead to loss of long-term dynamics. Moreover, earlier methods 

like price correlation coefficients could be misleading when applied to non-stationary data due 

to the presence of unit roots, and may yield spurious relationships. 
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In the context of market integration, cointegration plays a crucial role in understanding price 

transmission mechanisms across regional or international markets. For instance, strong 

cointegration between domestic and world prices suggests efficient market integration, low 

trade barriers, and synchronized price movements. Conversely, weak cointegration may imply 

fragmented markets and significant price disparities. 

Additionally, cointegration inherently implies the existence of Granger causality among 

variables indicating that prices in one market may help predict price changes in another. This 

property is particularly useful for policymakers and market analysts to examine price 

leadership, information flow, and the direction of causality between integrated markets. 

Thus, cointegration analysis not only enhances the statistical robustness of time series models 

involving non-stationary variables but also provides meaningful economic insights into the 

long-run co-movements and causal interrelationships between key economic indicators. 

2. Model Specification 

2.1 Vector Autoregressive(VAR) process 

A VAR is a simple extension of the AR(k) framework and is given by: 

           𝑌𝑡 = 𝛿 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 +⋯+ 𝐴𝑘𝑌𝑡−𝑘 + 𝑢𝑡                   (i) 

where,  𝑢𝑡~ 𝐼𝑁(0, 𝛴) 

where, 𝑌𝑡 = (𝑌1𝑡, 𝑌2𝑡, … , 𝑌𝑛𝑡)
′  is (n × 1) random vector of endogenous variables, each of the 

𝐴𝑖 is an  (𝑛 × 𝑛) matrix of parameters, δ is a fixed (𝑛 × 1) vector of intercept terms. Finally, 

𝑢𝑡 = (𝑢1𝑡, 𝑢2𝑡 , … , 𝑢𝑛𝑡)
′ is a n-dimensional white noise or innovation process, i.e., 𝐸(𝑢𝑡) = 0, 

𝐸(𝑢𝑡, 𝑢𝑡′) = 𝛴 and  𝐸(𝑢𝑡, 𝑢𝑠′) = 0 for  𝑠 ≠ 𝑡. The covariance matrix Σ is assumed to be non-

singular. 

2.2 Cointegration process 

Cointegration analysis is used to examine whether long-run equilibrium relationships exist 

between two or more series. The long-run relationship is given as: 

𝑃𝑡
1 = 𝛼0 + 𝛼1𝑃𝑡

2 + 𝜀𝑡                                                                                                              (ii) 

Let 𝑃𝑡
1 and 𝑃𝑡

2  denote the prices of a given commodity in two distinct markets. If the error 

term 𝜀𝑡 is stationary, it implies that the market prices are cointegrated. Cointegration analysis 

captures the long-run equilibrium relationship between price series, even though short-term 

deviations may occur. Johansen’s multivariate cointegration technique is employed to assess 

the presence of cointegration between the two price series. Prior to applying the cointegration 
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test, it is essential to verify the stationarity of the series. This is done using the Augmented 

Dickey-Fuller (ADF) test, which examines stationarity by regressing the original price series 

with an intercept, trend, the first differences, and lagged differences. Variables that are 

integrated to the same order are eligible for cointegration testing. The unit root test helps 

determine the order of integration—for example, a variable integrated of order one is denoted 

as I(1), while integration of order ppp is denoted as I(p). The ADF unit root test can be 

formulated as follows: 

∆𝑦𝑡 = 𝛽1 + 𝛽2𝑡 + 𝛿𝑦𝑡−1 + ∑ 𝛼𝑖∆𝑦𝑡−𝑖
𝑚
𝑖=1 + 𝜀𝑡                                                                      (iii) 

where ∆𝑦𝑡 is a vector to be tested for cointegration, t is time or trend variable. ∆𝑦𝑡 is the first 

difference ie., (∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1), 𝜀𝑡 is a white noise term. The null hypothesis that, 𝐻0: 𝛿 = 0; 

signifying unit root, states that the time series is non-stationary while the alternative hypothesis, 

𝐻1: 𝛿 < 0, signifies that the time series is stationary, thereby rejected the null hypothesis. Since 

ADF tests tell us whether a time series is integrated or not, therefore the test is known as a 

“Test for integration”. 

2.3 Johansen’s Cointegration Tests 

A cointegrated system can be written as: 

∆𝑦𝑡 = ∑ Γ𝑖
𝑘
𝑖=1 ∆𝑦𝑡−𝑖 + 𝛼𝛽

′𝑦𝑡−𝑘 + 𝜀𝑡                                                                                     (iv) 

where yt is the price series, ∆𝑦𝑡 is the first difference i.e., (∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1), and the matrix 

𝛼𝛽′ is n x n with rank (0 ≤ 𝑟 ≤ 𝑛), which is the rank of linear independent cointegration 

relations in the vector space of matrix. The Johansen’s method of cointegrated system is a 

restricted maximum likelihood method with rank restriction on matrix Π = 𝛼𝛽′. The rank of 

Π can be obtained by using 𝜆𝑡𝑟𝑎𝑐𝑒 or 𝜆𝑚𝑎𝑥 test statistics. The test statistics can be written as: 

𝜆𝑡𝑟𝑎𝑐𝑒 = −𝑇∑ ln (1 − 𝜆�̂�)
𝑛
𝑖=𝑟+1  ∀ 𝑟 = 0, 1, … , 𝑛 − 1                                                            (v) 

The estimated eigenvalues 𝜆�̂�’s represent the magnitude of correlation between the differenced 

terms and the error-correction components. To determine the number of cointegrating 

relationships, the Johansen cointegration test is applied by evaluating the following hypotheses: 

the null hypothesis 𝐻0: 𝑟𝑎𝑛𝑘 𝑜𝑓 Π = 𝑟 and under alternative hypothesis, 𝐻1: 𝑟𝑎𝑛𝑘 𝑜𝑓 Π > 𝑟, 

where rrr denotes the number of cointegrating vectors. This test is conducted under the 

assumption that the cointegrating equation contains only an intercept (i.e., no deterministic 
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trend), whereas the original series may exhibit a trend due to non-constant mean and variance 

over time, indicating non-stationarity. 

Granger Causality Test 

Once cointegration between the time series is established, the Granger causality test is applied 

to investigate the direction of causality between the variables. If two markets are cointegrated, 

it implies a long-run equilibrium relationship, and typically, the price in one market is found to 

Granger-cause the price in the other market and/or vice versa. The Granger causality test thus 

provides further insight into the dynamics of price transmission, indicating whether and in 

which direction the causal influence flows between the series. 

       

 

 

 

 

 

 

 

 

 

 

 

A VAR (2) model is applied in order to assess the causality of the price series. 

(
𝑦𝑡
𝑥𝑡
) = (

𝑎
𝑏
) + [

𝑐11 𝑐12
𝑐21 𝑐22

] [
𝑦𝑡−1
𝑥𝑡−1

] + [
𝑑11 𝑑12
𝑑21 𝑑22

] [
𝑦𝑡−2
𝑥𝑡−2

] + [
𝜀1𝑡
𝜀2𝑡
]                                           (vi) 

The matrix relation can be written in individual form as: 

𝑦𝑡 = 𝑎 + 𝑐11𝑦𝑡−1 + 𝑐12𝑥𝑡−1 + 𝑑11𝑦𝑡−2 + 𝑑12𝑥𝑡−2 + 𝜀1𝑡                                                     (vii) 

𝑥𝑡 = 𝑏 + 𝑐21𝑦𝑡−1 + 𝑐22𝑥𝑡−1 + 𝑑21𝑦𝑡−2 + 𝑑22𝑥𝑡−2 + 𝜀2𝑡                                                        (viii) 

The restrictions imposed to test the causality can be described as: 

lags of y do not explain the value of x so, 𝑐21 = 0 and 𝑑21 = 0 

Image Source: Wikipedia 

Figure: Time series X Granger-causes time series Y; the patterns in X are approximately repeated in Y 

after some time lag (two examples are indicated with arrows). Therefore, past values of X can be used 

for the prediction of future values of Y. 
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lags of x do not explain the value of y so, 𝑐12 = 0 and 𝑑12 = 0 

Hence, the null hypothesis for Granger causality test is defined as: 

𝐻0: 𝑐12 = 𝑑12 = 0 (𝑥𝑡 does not Granger cause 𝑦𝑡) 

𝐻0: 𝑐21 = 𝑑21 = 0 (𝑦𝑡 does not Granger cause 𝑥𝑡) 

2.5 Vector Error Correction Model (VECM) 

If the time series are found to be cointegrated, a Vector Error Correction Model (VECM) is 

estimated. The VECM can be viewed as an extension of the Vector Autoregressive (VAR) 

model, augmented by an error correction term that captures deviations from the long-run 

equilibrium. The VECM possesses two essential characteristics: 

First, it is dynamic in nature, incorporating both lagged values of the dependent and 

explanatory variables. This allows the model to capture short-run adjustments that arise from 

past disequilibria and current changes in the explanatory variables. 

Second, the VECM framework explicitly reveals the long-run cointegrating relationship among 

the variables through the error correction term. This term quantifies the speed at which the 

system returns to equilibrium after a short-term shock. 

Equation (ix) presents the structure of a VECM involving three variables. The model 

specification includes a constant term, the error correction component, lagged endogenous 

variables, and a stochastic error term, thereby providing a comprehensive depiction of both 

short- and long-run dynamics. 

[

∆𝑃𝑡
𝐵

∆𝑃𝑡
𝐶

∆𝑃𝑡
𝐻

] = [
𝑐1
𝑐2
𝑐3
] + [

𝑎1
𝑎2
𝑎3
] 𝐸𝐶𝑇−1 + [

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

] [

∆𝑃𝑡−1
𝐵

∆𝑃𝑡−1
𝐶

∆𝑃𝑡−1
𝐻

] + [

𝜀𝑡
𝑃𝐵

𝜀𝑡
𝑃𝐶

𝜀𝑡
𝑃𝐻

]                                           (ix) 

In equation (ix), 𝑃𝑡
𝐵, 𝑃𝑡

𝐶  and  𝑃𝑡
𝐻 represents time series datasets from three different markets. 

The Vector Error Correction Model (VECM) is a powerful framework for analyzing both short-

run dynamics and long-run equilibrium relationships among cointegrated time series variables. 

This representation is particularly valuable because it enables the estimation of how quickly 

variables adjust toward their long-term equilibrium path following a deviation. 
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A central feature of the VECM is the Error Correction Term (ECT), whose coefficient (denoted 

typically as αi\alpha_iαi) captures the speed of adjustment back to the long-run equilibrium 

after a shock. For the model to be valid and economically meaningful, the ECT coefficient 

must be negative and statistically significant. A negative and significant ECT implies that when 

the system deviates from equilibrium, it self-corrects in subsequent periods, restoring the 

balance over time. On the other hand, the coefficients of lagged explanatory variables in the 

VECM describe the short-run adjustments, revealing how immediate past changes in one 

variable affect current values of others 

3. Conclusion 

In a developing economy like India, understanding market integration is essential for 

formulating effective agricultural marketing policies, enhancing marketing efficiency, and 

guiding farmers in production planning and crop diversification towards high-value 

commodities. The concepts of cointegration and VECM modeling provide valuable tools for 

quantifying the degree of market integration by identifying long-term price relationships and 

information transmission between markets. 

Such studies help researchers and policymakers assess whether markets move together in the 

long run and how quickly they respond to temporary shocks. They offer crucial insights into 

market efficiency, price stabilization, and the effectiveness of policy interventions, ultimately 

benefiting all stakeholders in the agricultural supply chain—from producers and traders to 

consumers and regulators.  
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Introduction  

While many economic time series are inherently non-stationary and commonly require 

differencing to achieve stationarity, the conventional Box-Jenkins ARIMA methodology—

which assumes that differencing of integer order is sufficient—may not always yield the best 

model fit, especially in the absence of seasonal components. The traditional assumption is that 

once the appropriate number of integer differences is applied, the resulting series will exhibit 

rapidly decaying autocorrelations, allowing it to be adequately captured by a stationary and 

invertible ARMA model. This approach has been widely applied in agriculture (Paul and Das, 

2010; 2013; Paul et al., 2013a; 2013b). 

However, empirical evidence suggests that some time series do not contain a further unit root 

yet continue to exhibit persistent dependence over time—a phenomenon known as long 

memory. Such series may not be well-described by ARMA or ARIMA models. In these cases, 

a more flexible modeling approach is required—specifically, models that allow for fractional 

differencing. The Autoregressive Fractionally Integrated Moving Average (ARFIMA) model 

addresses this issue by incorporating a non-integer differencing parameter 𝑑. This parameter 

quantifies the degree of long-range dependence in the data, where values of 𝑑 different from 

zero imply the presence of long memory. The magnitude of 𝑑 reflects the strength of this 

memory, and its non-integer nature has led to its association with fractal structures in time 

series. 

Notably, ARFIMA models offer an effective alternative to conventional ARIMA models for 

series exhibiting such persistent dependencies. Estimating the long memory parameter  𝑑 using 

modern techniques—such as the wavelet-based approach—has gained traction in recent 

econometric research. Key contributions in the field include Robinson (1995) and Baillie et al. 

(1996), who surveyed long memory modeling in econometrics, while Beran (1994) provided 

insights across other disciplines. Despite the growing literature, long memory analysis in the 

context of agricultural commodity markets remains underdeveloped. One of the early studies 

by Helms et al. (1984) applied classical rescaled range (R/S) analysis to a limited data set of a 

mailto:ranjitstat@gmail.com


 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 112 - 
 

single commodity. Given the complex dynamics and persistence often observed in agricultural 

price series, there is a compelling need for further investigation into the long memory behavior 

of agricultural markets, using ARFIMA models and wavelet-based techniques. 

Long Memory Process 

Long memory in time-series data refers to the persistence of autocorrelations across long time 

lags (Robinson, 1995). In the context of time-series modeling, long memory implies that 

observations are not independent; instead, each observation is influenced by events that 

occurred in the distant past (Jin and Frechette, 2004). This is in contrast to short memory 

processes, where the impact of past events diminishes rapidly. The autocorrelation function 

(acf) of a time-series yt is defined as    

 𝜌𝑘 = 𝑐𝑜𝑣(𝑦𝑡, 𝑦𝑡−1)/𝑣𝑎𝑟(𝑦𝑡)      (1) 

for integer lag k. A covariance stationary time-series process is expected to have 

autocorrelations such that lim
𝑘→∞

𝜌𝑘 = 0 . Most of the well-known class of stationary and 

invertible time-series processes have autocorrelations that decay at exponential rate, so that 

𝜌𝑘 ≈ |𝑚|
𝑘, where |m|<1 and this property is true, for example, for the well-known stationary 

and invertible ARMA(p,q) process. For long memory processes, the autocorrelations decay at 

an hyperbolic rate which is consistent with 𝜌𝑘 ≈ 𝐶𝑘
2𝑑−1, as k increases without limit, where 

C is a constant and d is the long memory parameter. 

Testing of Long Memory 

The Hurst exponent (H), derived from the rescaled range (R/S) analysis, is a widely used 

statistical measure for detecting the presence of long memory or long-range dependence in a 

time-series. Originally introduced by H.E. Hurst in hydrology, the method was later extended 

and applied to economic and financial time-series by Booth et al. (1982) and Helms et al. 

(1984). For a given time-series, the Hurst exponent quantifies the degree of long-term, non-

periodic dependence, reflecting how long the memory or persistence of past values influences 

future observations. Specifically, the Hurst exponent indicates the average duration over which 

a time series remains correlated. The R/S analysis first estimates the range R for a given n:  

( ) ( ) ( ) −− −=
==

n

j
j

nj

n

j
j

nj
YYYYnR

1111
minmax      (2) 

where R(n) is the range of accumulated deviation of Y(t) over the period of n and Y  is the 

overall mean of the time-series. Let S(n) be the standard deviation of Yt over the period of n. 

For a given n, there exists a statistic  
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Q(n) = R(n)/S(n)         (3) 

Here, n is the time scale to split total observations T into int[T/n] segments where int[.] denotes 

the integer part of [.]. There will be int[T/n] estimates of R(n)/S(n) for a given n. The final 

R(n)/S(n) is the average of int[T/n]’s R(n)/S(n). As n increases, the following holds: 

( ) ( ) HnnSnR =/ ,   is a constant. 

or 

( ) ( )( ) nHnSnR loglog/log +=      (4) 

Thus, H is a parameter that relates mean R/S values for subsamples of equal length of the series 

to the number of observations within each equal length subsample. H is always greater than 0. 

When 0.5<H<1, the long memory structure exists. If H ≥ 1, the process has infinite variance 

and is nonstationary. If 0<H<0.5, anti-persistence structure exists. If H=0.5, the process is 

white noise. The relationship between Hurst exponent and long memory parameter is: H=1-d, 

ARFIMA Model 

Fractional integration serves as the fundamental conceptual framework for characterizing long 

memory in time-series data, particularly in financial and economic applications. Unlike 

traditional integer-order integration, which assumes time-series are integrated of order zero 

[I(0)] or one [I(1)], fractional integration provides a more flexible approach by allowing the 

order of integration, denoted by 𝑑 to take on non-integer (fractional) values. This generalization 

is especially useful for modeling series that exhibit long-range dependence, where the 

autocorrelations decay at a slower, hyperbolic rate rather than the exponential decay observed 

in short memory processes. The most commonly used model incorporating fractional 

differencing is the Autoregressive Fractionally Integrated Moving Average (ARFIMA) model, 

denoted by ARFIMA(p,d,q), 

p: order of the autoregressive (AR) component, 

𝑑: fractional differencing parameter (order of integration), 

𝑞:order of the moving average (MA) component.  

                          (1 − 𝐿)d𝜑(𝐿)𝑦𝑡 =  𝜃(𝐿)𝑢𝑡         (5) 

where 𝑢𝑡 is an independently and identically distributed (i.i.d.) random variable with zero mean 

and constant variance, L denotes the lag operator; and 𝜑(𝐿)  and 𝜃(𝐿)  denote finite 

polynomials in the lag operator with roots outside the unit circle. For d = 0, the process is 

stationary, and the effect of a shock u(t) on y(t + j) decays geometrically as j increases. For d 

= 1, the process is said to have a unit root, and the effect of a shock u(t) on y(t + j) persists into 
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the infinite future. In contrast, fractional integration defines the function (1 - L)-d for noninteger 

values of the fractional differencing parameter d.  

For -0.5< d< 0.5 the process y(t) is stationary and invertible. For such processes, the effect of 

a shock u(t) on y(t+ j) decays as j increases, but the rate of decay is much slower than for a 

process integrated of order zero.  

In stationary time series, the autocorrelation function (ACF) decays geometrically, while in 

fractionally integrated processes, it decays hyperbolically, indicating long memory. The sign 

of autocorrelations aligns with the sign of the differencing parameter 𝑑. Thus, ARFIMA(p, d, 

q) models effectively capture long memory more efficiently than high-order ARMA 

models.Correct specification of 𝑝 and 𝑞 is crucial. As noted by Robinson (2003), under- or 

over-specifying AR or MA orders can lead to inconsistent estimation of both short-term 

coefficients and the long memory parameter 𝑑, causing model misidentification. 

Estimation of long memory parameter 

For estimating the long memory parameter, GPH estimator proposed by Geweke and Porter-

Hudak (1983) is used in the present investigaton. Robinson (1995), Hurvich et al. (1998) and 

Tanaka (1999) have analyzed the GPH estimate in detail. Under the assumption of normality 

for yt, it has been proved that the estimate is consistent and asymptotically normal.  

 

Illustration (Paul, 2014) 

Daily wholesale prices of pigeon pea (Arhar) from Amritsar, Bhatinda, and all-India maximum, 

minimum, and modal prices from Jan 1, 2012 to Dec 31, 2013 were sourced from the Ministry 

of Consumer Affairs, Govt. of India. Data from Jan 2012 to Oct 2013 were used for model 

development, and the rest for validation. Figure 1 shows that the series appear stationary. To 

confirm, ADF (Said & Dickey, 1984) and PP (Philips & Perron, 1988) unit root tests were 

conducted. As per Table 1, all series are stationary. If trends are present, a test with trend is 

applied; otherwise, a test with mean only is used. 
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Fig. 1: Time series plot of wholesale prices of Pigeon Pea in different markets  

 

 

Structure of Autocorrelations 

For a linear time series model, such as the autoregressive integrated moving average 

(ARIMA(p,d,q)) process, the patterns of autocorrelations (ACF) and partial autocorrelations 

(PACF) help determine the plausible model structure. This information is also crucial when 

modeling nonlinear dynamics. The presence of long-lasting autocorrelations suggests that the 

underlying process may be nonlinear with time-varying variances. A key property of long 

memory processes is that dependence between distant observations remains significant. For the 

daily wholesale price series, autocorrelations were estimated up to 100 lags (j = 1,...,100). The 
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ACF plots, shown in Figure 2, indicate that these autocorrelations decay hyperbolically rather 

than exponentially, and do not display any clear seasonal or periodic patterns. The magnitude 

of the autocorrelations does not diminish rapidly as the lag increases, confirming the absence 

of short-term cycles and highlighting the long memory nature of the data. 

 

 

 

 

 

 
 

 

Fig. 2: Correlogram of time series data of wholesale prices of Pigeon Pea in different 

markets 
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Testing Stationarity 

ADF Test  

The ADF test tests the null hypothesis that a time series yt is I(1) against the alternative that it 

is I(0), assuming that the dynamics in the data have an ARMA structure. The ADF test is based 

on estimating the test regression 

t

p

j
jtjtt yyy + ++=

=
−−

1
1tDβ  

In this context, Dt represents a vector of deterministic components, such as constants and linear 

trends. The model includes ppp lagged difference terms to capture and approximate the 

autoregressive moving average (ARMA) structure of the error process. The optimal lag length 

p is chosen to ensure that the residual term ut is free from serial correlation. Additionally, the 

error term is assumed to be homoskedastic. 

Under the null hypothesis, the series is integrated of order zero, denoted as I(0), which 

corresponds to the condition π=0. The Augmented Dickey-Fuller (ADF) test statistic used to 

test this null hypothesis is the conventional t-statistic applied to the coefficient π. The ADF test 

was conducted on the dataset under consideration, and the results are presented in Table 1. 

Phillips-Perron (PP) Unit Root Tests 

The Phillips-Perron (PP) unit root test differs from the ADF test primarily in the treatment of 

serial correlation and heteroskedasticity in the error terms. While the ADF test incorporates a 

parametric autoregressive framework to model the ARMA structure in the error process, the 

PP test allows for a more flexible approach by not requiring such parametric adjustments within 

the test regression. 

The test regression for the PP approach is specified as follows: 

ttt uyy ++= −1tDβ  

where the error term ut is assumed to be I(0) and may exhibit heteroskedasticity. The PP test 

accounts for both serial correlation and heteroskedasticity in the residuals ut by applying non-

parametric corrections directly to the test statistics. Despite these corrections, under the null 

hypothesis π=0, the asymptotic distribution of the PP test statistic remains identical to that of 

the ADF t-statistic. 

One of the key advantages of the PP test is its robustness to general forms of heteroskedasticity 

in the error term. Moreover, unlike the ADF test, the PP test does not require the user to pre-

specify the lag length for the regression, making it more flexible in certain empirical 
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applications. The PP test was also applied to the current dataset, and the results are likewise 

reported in Table 1. 

Table 1: Stationarity testing 

Market 

ADF Test Statistic PP Test Statistic 

Single 

Mean 

With 

Trend 

Probability 
Single 

Mean 

With 

Trend 

Probability 

Single 

Mean 

With 

Trend 

Single 

Mean 

With 

Trend 

Amritsar 5.46 7.08 0.0238 0.0283 -3.29 -3.76 0.0165 0.0199 

Bhatinda 6.85 9.43 0.0010 0.0010 -3.70 -4.27 0.0047 0.0039 

 

All India 

 

Maximum 13.11 42.71 <.000

1 

<.000

1 

-5.12 -9.23 <.0001 <.0001 

Minimum 8.32 11.55 0.0402 0.0010 -3.53 -4.81 0.0195 0.0006 

Modal 15.43 27.00 <.000

1 

<.000

1 

-5.55 -7.35 <.0001 <.0001 

 

The most widely used method to estimate the fractional integration parameter 𝑑 is the ARFIMA 

time series approach (Robinson, 2003). Various ARFIMA model specifications were 

estimated, and the best model was selected based on the minimum AIC value. The estimated 

parameters and corresponding t-statistics for the selected ARFIMA models are reported in 

Table 2. The results indicate evidence of long memory in five price series, with 0<𝑑<0.5. 

Positive and significant 𝑑 values suggest persistence—characterized by positive 

autocorrelations and low-frequency variance. When 𝑑 is significantly positive, it may imply 

that the series has infinite conditional variance. The estimated 𝑑 values range from 0.052 to 

0.489, with the All India Maximum Price series exhibiting the strongest long memory. These 

findings confirm that autocorrelations decay hyperbolically with increasing lag length. 

Table 2: Parameter estimates of ARFIMA Model 

 

Market  Parameters Estimate Probability 

Amritsar 
d 0.077    0.001  

AR1 0.915     < 0.001  

Bhatinda 

d 0.052   0.040  

AR1 1.6154 < 0.001  

AR2 -0.623 < 0.001  

MA1 0.821 < 0.001  

Maximum 

Price 

d 0.489 < 0.001  

AR1 -0.223 < 0.001  

AR2 -0.128 0.0168  

Minimum 

Price 

d 0.093 < 0.001  

AR1 1.1467 < 0.001  

AR2 -0.149 < 0.001  

MA1 0.784 < 0.001  
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Modal 

Price 

d 0.477 < 0.001  

AR1 -0.157 0.008 

AR2 0.183 < 0.001 

 

 

Validation 

One-step-ahead forecasts of wholesale prices and their corresponding standard errors were 

generated using the naïve approach for the period from November 1, 2013 to December 31, 

2013 (covering 40 data points, excluding market holidays) based on the fitted ARFIMA model. 

A notable feature of the fitted model is that all observed values fall within one standard error 

of their respective forecasts.To evaluate forecast accuracy, Relative Mean Square Prediction 

Error (RMSPE), Mean Absolute Prediction Error (MAPE), and Relative Mean Absolute 

Prediction Error (RMAPE) were calculated using standard formulae and are presented in Table 

3.  

MAPE =  −
=

++

40

1

ˆ40/1
i

itit yy    

RMSPE = ( )  −
=

+++

40

1

2
/ˆ40/1

i
ititit yyy              

RMAPE =   100/ˆ40/1
40

1

 −
=

+++
i

ititit yyy   

                       

 

                           Table : Validation of Models 

Market MAPE RMSPE RMAPE (%) 

Amritsar 195.964 204.773 3.5 

Bhatinda 323.303 333.535 4.8 

Max Price 352.963 366.503 4.7 

Min Price 168.629 194.520 3.3 

Modal Price 173.679 177.470 3.1 

 

A perusal of above table indicates that in all the price series data, RMAPE is less than 5% 

indicating the accuracy of the models. 

R code for application of ARFIMA model 

library(forecast) 

library(tseries) 

data<-read.delim("clipboard") 

###### ARFIMA model 
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ts<-as.ts(data[,2]) #convert to time series  

acf(ts)  # ACF plot 

pacf(ts) # PACF plot 

adf_test<-adf.test(ts) # stationary plot 

train<-ts[c(1:(length(ts)*0.9))] #train data 

test<-ts[-c(1:(length(ts)*0.9))] #test data 

model<-arfima(ts, drange=c(0, 0.5), estim=c("mle","ls")) #model  

Forecast<-forecast(model, h=length(test)) # future forecast 

accuracy(Forecast, x=test) ## accuarcy measure 

plot(Forecast) ##plot 

References  

Baillie, R. T., Bollerslev, T., Mikkelsen, H.O. (1996). Fractionally integrated generalized 

autoregressive conditional heteroskedasticity. Journal of Econometrics, 74, 3–30. 

Beran, J. (1994). Maximum likelihood estimation of the differencing parameter for invertible 

short and long memory autoregressive integrated moving average models. Journal of 

the Royal Statistical Society, B 57 (4) 659-672 

Booth, G.G., F.R. Kaen, and P.E. Koveos. (1982). R/S Analyses of Foreign Exchange Rates 

under Two International Monetary Regimes. Journal of Monetary Economics, 10, 407-

415. 

Geweke, J., Porter-Hudak, S. (1983). The estimation and application of long-memory time-

series models. Journal of Time series Analysis, 4, 221–238. 

Helms, B.P., F.R. Kaen, and R.E. Rosenman. (1984). Memory in Commodity Futures 

Contracts. The Journal of Futures Markets, 10, 559-567. 

Hurvich, C.M., Deo, R. and Brodsky, J. (1998). The mean squared error of Geweke and Porter-

Hudak’s estimator of the memory parameter of a long-memory time-series. Journal of 

Time series Analysis, 19, 19-46. 

Jin, H. J., and Frechette, D. (2004). Fractional integration in agricultural futures price 

volatilities. American Journal of Agricultural Economics, 86, 432-443. 

Paul, R. K. and Das, M. K. (2010). Statistical modelling of Inland fish production in India. 

Journal of the Inland Fisheries Society of India, 42 (2), 1-7 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 122 - 
 

Paul, R. K. and Das, M. K. (2013). Forecasting of average annual fish landing in Ganga Basin. 

Fishing chimes, 33 (3), 51-54 

Paul, R. K., Prajneshu and Ghosh, H. (2013a). Statistical modelling for forecasting of wheat 

yield based on weather variables. Indian Journal of Agricultural Sciences, 83(2), 180-

183. 

Paul, R. K., Panwar, S., Sarkar, S. K., Kumar, A. Singh, K. N., Farooqi, S. and Chaudhary, V. 

K. (2013b). Modelling and Forecasting of Meat Exports from India. Agricultural 

Economics Research Review, 26 (2), 249-256. 

Paul, R. K. (2014). Forecasting Wholesale Price of Pigeon Pea Using Long Memory Time-

Series Models. Agricultural Economics Research Review, 27(2), 167-176.  

Phillips, P.C.B. and P. Perron (1988). Testing for Unit Roots in Time Series Regression. 

Biometrika, 75, 335-346. 

Robinson, P.M. (1995). Log-periodogram regression of time-series with long-range 

dependence. The Annals of Statistics, 23, 1048–1072. 

Tanaka, K. (1999). The nonstationary fractional unit root. Econometric Theory, 15, 549- 582. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 123 - 
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Introduction  

The Autoregressive Integrated Moving Average (ARIMA) methodology developed by Box et 

al. (2007) has remained one of the most dominant parametric approaches for analyzing time-

series data over the past few decades. In this framework, various explanatory variables 

influence the model “implicitly” through the use of past values of the response variable. 

However, in many practical situations, especially in complex phenomena, it becomes difficult 

to assume an appropriate parametric form. In such scenarios, nonparametric approaches offer 

better flexibility and modeling capability. One such powerful and emerging nonparametric 

approach is Wavelet Analysis (Vidakovic, 1999; Percival and Walden, 2000). Despite the 

growing number of theoretical papers on wavelet methods, their actual implementation and 

application to empirical data still pose significant challenges to researchers. 

 

Wavelet analysis can be conducted in two primary ways: in the time domain and the frequency 

domain. Time-domain wavelet analysis typically involves techniques like wavelet 

thresholding. For instance, Sunilkumar and Prajneshu (2004) effectively applied wavelet 

thresholding for modeling and forecasting monthly rainfall across meteorological subdivisions 

in Eastern Uttar Pradesh, India. On the other hand, frequency-domain wavelet analysis is 

suitable for identifying and analyzing trends and cycles within time-series data. Almasri et al. 

(2008) proposed a new statistical test based on wavelet decomposition for detecting the 

presence of a trend in time-series data. A key difficulty in trend testing arises due to the 

presence of autocorrelation among residuals, which makes standard tests based on ordinary 

least squares (OLS) regression unreliable. In such cases, the autocovariance structure often 

exhibits slow decay, indicating long memory in the series. Wavelet analysis proves useful here 

because it can better match the structure of long-memory processes. 

One of the main advantages of wavelet transformation is that it changes the behavior of 

autocovariance functions. While the original time-domain series may be strongly 

autocorrelated, the transformed wavelet series often shows much faster hyperbolic decay in 

autocovariances. This makes the transformed series almost uncorrelated in the wavelet domain, 

mailto:ranjitstat@gmail.com
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thereby improving the reliability of statistical tests and trend estimation. In fact, this property 

of wavelets makes them highly useful for modeling long memory and complex temporal 

dependencies. Rainfall plays a critical role in determining agricultural performance in any 

country, and particularly in India where monsoon rainfall largely influences crop production 

and food security. Therefore, accurate modeling and prediction of rainfall is of utmost 

importance for agricultural planning, decision-making, and policy formulation. In the Indian 

context, Rajeevan et al. (2004) have provided a comprehensive review of rainfall prediction 

models using multiple and power regression techniques, highlighting various modifications 

that have been made over time, particularly in identifying relevant predictor variables and 

improving model performance.In recent years, there has been growing interest in the 

application of wavelet-based models to study agricultural time-series data. Several studies have 

employed wavelet methods to improve forecasting accuracy and capture hidden structures in 

data. Examples include the works of Anjoy and Paul (2017), Anjoy et al. (2017), Paul et al. 

(2013), Paul (2015), Paul and Birthal (2015), Sarkar et al. (2019), Paul et al. (2020), Paul et al. 

(2021), Singla et al. (2021), Paul and Garai (2021), Paul and Mitra (2021), Paul and Garai 

(2022), and Paul et al. (2022). These studies reflect a wide array of applications ranging from 

price forecasting to climate modeling and agricultural risk analysis. The present lecture aims 

to focus on the application of wavelet analysis in the frequency domain, particularly for 

estimation and testing of significant trends in India’s monsoon rainfall data covering the period 

from 1979 to 2006. This approach will not only help in detecting long-term trends in the 

monsoon but also assist in better understanding of the rainfall dynamics that influence Indian 

agriculture. 

Basics of Wavelets    

The term wavelet refers to a class of basic functions characterized by a unique mathematical 

structure, which underpins their key properties and broad applicability in statistical analysis. 

Wavelets serve as fundamental building blocks, much like the sine and cosine functions in 

Fourier analysis. Similar to these trigonometric functions, a wavelet oscillates around zero, a 

property that qualifies it as a "wave." 

However, unlike sine and cosine waves that extend indefinitely, wavelet functions exhibit a 

localized nature their oscillations diminish and converge to zero. This dampening behavior 

gives rise to the term wavelet, indicating a small or finite-duration wave. 
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Formally, let (.) be a real-valued function defined over the real line R. To qualify as a wavelet, 

this function must satisfy two fundamental properties: 

1. Admissibility condition – ensuring the existence of the inverse wavelet transform. 

2. Zero mean – the function must integrate to zero over the entire real line. 

These foundational properties allow wavelets to efficiently represent localized features in both 

time and frequency domains, making them powerful tools for time series analysis, signal 

processing, and data compression. 

 

(i) The integral of (.)  is zero: 

    0)( =


−

duu  

(ii) The square of (.)  integrates to unity: 

    1)(2 =


−

duu  

Then the function (.)  is called a wave. 

Discrete Fourier transform 

The transformation of a function into its wavelet components shares many similarities with its 

transformation into Fourier components. An understanding of wavelet analysis typically begins 

with a discussion of the classical Fourier transformation. The concept, introduced by the French 

mathematician Jean-Baptiste Fourier, establishes that any square-integrable function defined 

on the interval [−π,π] can be decomposed into a series of component functions derived from 

standard trigonometric bases. Specifically, a function fff is said to belong to the square-

integrable space L2[a, b] if it satisfies the condition of finite energy over the interval, expressed 

as: 

          ( ) 

b

a

2 dxxf  

Fourier’s results states that any function f  L2[-π, π] can be expressed as an infinite 

sum of dilated cosine and sine functions given by 

( )


=

++=
1

0 )sin()cos(
2

1
)(

j

jj jxbjxaaxf                                      (1) 

where                               

−=



dxjxxfa j .cos)(

1
                      j = 0, 1, 2,… 

        −=



dxjxxfb j .sin)(

1
                        j = 1, 2,… 
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The series expansion is regarded as a transform, taking a function f into a set of 

coefficients aj and bj. The Fourier series expansion is extremely useful in that any L2 function 

can be written in terms of very simple building block functions: sines and cosines, because the 

set of functions {sin(j.), cos(j.), j=1,2,…}, together with the constant function, form a basis for 

the function space L2[-π, π] which is orthonormal. A sequence of functions {fj} are orthonormal 

if the fj’s are pairwise orthogonal and if ║fj║=1, for all j.  

Wavelet analysis versus Fourier analysis 

Wavelet analysis and Fourier analysis share a fundamental similarity in that both techniques 

aim to express a function as a linear combination of basis functions. In Fourier analysis, these 

basis functions are complex exponentials of the form {eiwx=coswx+isinwx}, while in wavelet 

analysis, the basis functions are wavelets denoted as {ψj,k}. A key distinction between the two 

lies in their indexing: Fourier basis functions are indexed by a single frequency parameter ω, 

whereas wavelet basis functions are indexed by two parameters—scale (j) and position (k). 

This means that wavelets provide a much richer and more flexible set of basis functions 

compared to the relatively limited set in Fourier analysis. The essential difference lies in how 

the two analyses handle frequency and time (or location). In classical Fourier analysis, the sine 

and cosine functions offer precision in the frequency domain, but they lack localization in time. 

That is, while they identify which frequencies are present in a signal, they cannot determine 

when these frequencies occur. Wavelets, on the other hand, offer dual localization. Through 

translation (shifting in time) and dilation (scaling in frequency), wavelet basis functions can 

capture both the frequency content and its location in time. This makes wavelet analysis 

particularly powerful for studying signals that exhibit time-varying behavior. One of the 

standout features of wavelet transforms is their locality. The wavelet coefficients are dependent 

only on the behavior of the function in the vicinity of each time point. As a result, if the function 

contains abrupt changes, discontinuities, or spikes—known as singularities—these features 

will only affect the wavelet transform locally, around the singularity. This is in stark contrast 

to Fourier transforms, which are global in nature: a single discontinuity in the signal can 

influence the Fourier coefficients across the entire domain. Therefore, when analyzing data that 

exhibit local irregularities or non-stationary patterns, wavelet analysis provides a more 

appropriate and effective tool.  
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Time domain versus Frequency domain 

The most widely used method to represent signals and waveforms is in the time domain. 

However, many analytical techniques work primarily in the frequency domain. 

Understanding how a signal appears in the frequency domain can be somewhat challenging. 

In essence, the frequency domain is just an alternative representation of a signal. 

To illustrate, imagine a simple sine wave as an example. 

This sine wave is usually plotted on a time-amplitude graph, which defines the time plane. 

Now, if we introduce another axis to represent frequency, the sine wave can be visualized in 

three dimensions. 

 

                                      

                                        

In time-frequency analysis, the frequency-amplitude plane serves a role analogous to that of 

the time-amplitude plane in representing a signal. The frequency plane is orthogonal to the time 

plane, and both intersect along the common amplitude axis. When the frequency spectrum of 

a signal is displayed, it is essentially a representation of this frequency plane.A time-domain 

signal can be seen as the projection of a sinusoidal wave onto the time-amplitude plane. 

Meanwhile, the sinusoid itself exists at a specific distance along the frequency axis, 

corresponding to its frequency, which is the inverse of its period. The projection of this 

waveform onto the frequency plane appears as a vertical line at the given frequency, rising to 
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a height equal to the sinusoid’s amplitude. Hence, the sinusoid simultaneously exhibits a 

waveform in the time domain and a spike in the frequency domain.  

Discrete Wavelet Transform (DWT) 

Wavelet transforms have evolved through two major approaches: the Continuous Wavelet 

Transform (CWT) and the Discrete Wavelet Transform (DWT). The CWT is suited for 

analyzing continuous signals defined over the real number line, while the DWT is designed for 

discrete signals—those indexed over integers, such as digital time-series data. 

The DWT decomposes a time-series into components associated with both low and high 

frequency bands, enabling a multi-resolution representation of the data. This allows for 

effective modeling and analysis, especially in the presence of time-varying patterns, by using 

the inverse DWT to reconstruct the original signal from its components. 

Several features make DWT a powerful tool for time-series analysis: 

Time-Scale Localization: 

DWT re-expresses a time-series through coefficients associated with specific dyadic scales2j-1 

and corresponding time positions. These coefficients preserve all information in the original 

series, allowing for perfect reconstruction. 

Energy Decomposition: 

DWT partitions the signal energy across different scales and times, much like analysis of 

variance (ANOVA) in statistics. This makes it useful for identifying how energy (or variability) 

is distributed across frequencies and over time. 

Decorrelation Capability: 

DWT effectively decorrelates many types of real-world time-series, especially those common 

in physics, engineering, and finance. This property makes it valuable in statistical modeling, 

where uncorrelated components simplify analysis. 

Computational Efficiency: 

The DWT can be computed efficiently using a recursive method known as the Pyramid 

Algorithm, which is even faster than the widely known Fast Fourier Transform (FFT). 

In summary, the DWT serves as a versatile and computationally efficient method for analyzing 

time-series, capturing both short-term fluctuations and long-term trends by localizing features 

in both time and frequency domains.  

 The first stage for computing the DWT simply consists of transforming the time-series X 

of length N = 2J into the N/2 first level wavelet coefficients W1 and the N/2 first level scaling 
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coefficients V1. Precisely, to obtain unit scale wavelet coefficients, time-series 

 1,...,0: −= NtX t  is circularly filtered with filter hl, l = 1, 2, …, L-1, where L is the width 

of the filter and must be an even integer. For hl to have width L, it must satisfy the conditions: 

h0 ≠ 0 and hL-1 ≠ 0. Now define hl = 0 for l < 0 and l ≥ L so that hl is actually an infinite sequence 

wit at most L nonzero values. A wavelet filter must satisfy the following three basic properties: 
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for all nonzero integers n. Compute 
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Now define N/2 wavelet transforms for unit scale corresponding to t=0,…,N/2−1 as  
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This procedure is called “Downsampling” procedure. To obtain first stage scaling 

coefficients,   define scaling filter  ( ) lL
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Then the first level scaling coefficients are 
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The second stage of Pyramid algorithm consists of treating  tV ,1  in the same way as  tX  

was treated in the first stage. Then we circularly filter  tV ,1  separately with  lh  and  lg  

and subsample to produce two new series, namely  


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Nltt VW  (5)                                                                                                       
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Nltt VV ,  t=0,1,…,N/4−1.                                      (6) 

Above procedure is repeated J times to obtain 2J DWT’s. There are J-2 subsequent 

stages to the Pyramid algorithm. For j = 3,…, J, the jth stage transforms Vj-1 of length N/2j-1  

into Wj and Vj each of length N/2j. At the jth stage, the elements of Vj-1 are filtered separately 

with wavelet filter lh , and scaling filter lg . The filter outputs are subsampled to form 

respectively Wj and Vj. The elements of Vj are called the scaling coefficients for level j, while 

those of Wj contain the desired wavelet coefficients for level j. At the end of Jth stage, the DWT 

coefficient W is formed by concatenating the     J + 1 vectors.  

Let P be an N  N real valued matrix defining the DWT and satisfying the 

orthonormality property P`P = IN, where IN is the NN identity matrix. Then the DWT (W) of 

the time-series vector X may be computed by W = P X. Now the elements of the vector W are 
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decomposed into J+1 subvectors. The first J subvectors contains all of the DWT coefficients 

for scale j . Then W can be written as 

               = JJ21 VWWWW ...  

Multiresolution Analysis (MRA) 

Consider the wavelet synthesis of X 

   JJ

J

1j

jj VQWPWPX +== 
=

,                                                      (7) 

where Pj and QJ matrices are defined by partitioning the rows of P commensurate with the 

partitioning of W into W1, …, WJ and VJ. Thus the NN 2/  matrix P1 is formed from the n 

= 0 up to n = N/2-1 rows pf P; the NN 4/  matrix P2 is formed from the n = N/2 up to n = 

3N/4-1 rows; and so forth, until we come to the N1  matrices PJ and QJ, which are the last 

two rows of P.  

Thus  

  = JJ2 QPPP ...1P  

Now define Dj = P`j Wj for j = 1,…, J, which is an N dimensional column vector whose 

elements are associated with changes in X at scale j ; i.e., Wj = PjX  represents the portion of 

the analysis W = PX attributable to scale j , while P`j Wj  is the portion of the synthesis X = 

P`W attributable to scale j . Let SJ  = Q`JVJ which has all its elements equal to the sample 

mean X . Then it can be seen that 

 J

J

j

jD SX +=
=1

,                                                                            (8) 

which defines a multiresolution analysis (MRA) of X; i.e., the time-series X is expressed as the 

sum of a constant vector SJ and J other vectors Dj, j = 1,…, J each of which contains a time-

series related to variations in X at a certain scale. Dj is called the jth level wavelet detail.  

Estimation of Trend by Wavelets 

Sometimes it is important to decompose a time-series into different components of variations 

like, low frequencies (trend), and high-frequency (noise) components. And the multiresolution 

analysis is used for decomposing and describing the low frequencies and high-frequency 

components in the data in a scale by scale basis. Consider the following model for a time-series 

data {Xt }:  

Xt = μ + Tt + Zt,  t = 0, . . . , N – 1,                                                 (9) 
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where μ is a constant term, Tt is an unknown deterministic polynomial trend function of order 

r, Zt is a residual term which is a long-memory process defined by ( )B−1 Zt = t , where, 

is the long memory parameter, { t  } is a Gaussian white noise process with mean zero and 2



> 0. Here, B, is the back shift operator such that BZt = Zt-1. 

Now, since  = JJ21 VWWWW ... , the vector W can be written as sum of two 

vectors: W = Ww + Ws, where Ww is an N × 1 vector containing the wavelet coefficients and 

zeros at all other locations, and Ws is an N × 1 vector containing the scaling coefficients and 

zeros at all other locations. Since X = P`W, therefore,  

X = P`W = P` Ws + P` Ww  = ZT ˆˆ + ,                                         (10) 

where T̂  is an estimator of the polynomial trend T at level J , while Ẑ  is the estimate of 

residual Z. The issue of choosing the level of the estimate depends on the goal of application. 

J should be chosen small for detecting the local trends and cycles. In other applications, J is set 

to be large, if the aim is to detect the global trend.  

The orthonormality of the matrix P implies that the DWT is an energy preserving 

transform so that  


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Given the structure of the wavelet coefficients, the energy in X is decomposed, on a scale by 

scale basis, via 
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so that 
2

jW  represents the contribution to the energy of {Xt} due to changes at scale j . 

whereas 
2

JV represents the contribution due to variations at scale J . So the estimated 

variance of the time-series in terms of wavelet and scaling coefficients can be expressed as: 
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where )(ˆ2

jXv   is the estimated variance of the wavelet coefficients at scale j  , and 2ˆ
JS is the 

estimated variance of the trend. 
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For testing the null hypothesis H0: Trend = 0, Almasri et al. (2008) proposed a test 

statistic that can discriminate between this null hypothesis and the alternative hypothesis H1: 

Trend ≠ 0 is defined as follows:  


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v

G J

1

2

2

)(ˆ

ˆ




                                                                          (14) 

The test statistic (N - N/2J)/(N/2J - 1)G will follow an F distributed with (N/2J - 1) and (N - N/2J 

) degrees of freedom, under the assumption of normally distributed scaling coefficients. 

However, when errors deviate from normality or exhibit dependency, the true distribution of 

this test statistic becomes unknown. In such cases, it is essential to compute empirical critical 

values through simulation experiments to better understand the distributional behavior of the 

statistic under non-standard conditions. Wavelet-based estimation has a distinct advantage over 

the Fourier transform because of its localization in both time and frequency domains. This 

characteristic allows the wavelet estimates to vary with time 𝑡 which is particularly useful for 

analyzing long memory processes. Such processes often manifest as localized trends and 

cycles, which may eventually disappear, making them difficult to capture with global methods 

like Fourier analysis. Wavelets, however, can isolate these transient features effectively across 

different scales  𝐽 providing richer insights into the structure of variability. An important aspect 

of wavelet analysis is the selection of an appropriate wavelet filter. The choice depends on the 

structural characteristics of the data under investigation. For instance, the Haar wavelet, a 

piecewise constant function, is well-suited for detecting structural breaks or sharp 

discontinuities in a series. This is because it preserves such features without smoothing them 

out. On the other hand, smoother wavelets like those with length 𝐿 >2  (e.g., Daubechies 

wavelets) provide better continuity but may blur discontinuities, making them less effective for 

change-point detection. In general, wavelets with wider support (large 𝐿) offer smoother 

approximations but lower spatial localization, whereas wavelets with narrow support (small 𝐿) 

are highly localized but less smooth. 

Basis Functions 

Just as any two-dimensional vector (x,y) can be decomposed into a linear combination of the 

basis vectors (1,0) and (0,1), functions can also be expressed as linear combinations of basis 

functions. In Fourier analysis, these basis functions are sines and cosines, which satisfy the 

property of orthogonality—their inner product over a given interval sums to zero when 
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different. By selecting appropriate combinations of these trigonometric functions, one can 

represent a wide class of functions. Wavelet analysis follows a similar principle using wavelet 

families to construct orthonormal bases. A wide variety of wavelet families have been 

developed, each suited to different types of data and analysis goals. Two of the most widely 

used wavelet systems are the Haar wavelet and the Daubechies wavelet. These enable the 

generation of orthonormal wavelet bases tailored to specific function spaces, allowing for 

flexible and efficient representation and analysis of complex signals. 

The Haar System 

 The simplest wavelet basis for L2(R) is the Haar basis. The Haar function is a bonafide wavelet, 

though not used much in practice, uses a mother wavelet given by 

 

                  

        1,   0 ≤ x < ½, 

                 ψ(x) =     -1,   ½ ≤ x ≤1,                                                

                                                                  0,   otherwise 

The Haar wavelet is piecewise constant over intervals of length one-half and can be expressed 

by a picture as follows (Fig.1).  

`haar' mother, psi(0,0)

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

 

Fig. 1.  The Haar function 

Haar wavelets are characterized by their compact support, meaning they vanish outside 

a finite interval, which allows for good time localization. However, when analyzing functions 

that require higher levels of regularity or smoothness, the Haar system becomes unsuitable. 

This is primarily because Haar wavelets lack continuous differentiability and exhibit poor 

decay of coefficients at infinity, making them less effective for representing smooth functions. 

These limitations reduce their applicability in many data analysis contexts. To address these 

drawbacks, Daubechies (1992) introduced a family of smooth wavelet bases by replacing the 

Haar scaling function with one exhibiting greater regularity. The resulting Daubechies wavelets 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 134 - 
 

offer significantly improved behavior for analyzing smooth or more complex functions, 

thereby broadening their utility in practical applications. 

Daubechies Wavelet Bases 

By imposing an appealing set of regularity conditions, Daubechies (1992) came up with a 

useful class of wavelet filters, all of which yield a DWT in accordance with the notion of 

differences of adjacent averages. The definition for this class of filters can be expressed in 

terms of the squared gain function for the associated Daubechies scaling filters gl, l = 0, …, L-

1: 

( ) ( ) ( ) ( )fffG l
L

l

lL

l
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12/
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12/ sincos2 
−

=

+− ,             

where L is a positive even integer. 

Using the relationship ( ) ( )2/1+= fGfH DD , the corresponding Daubechies wavelet filters 

have squared gain functions satisfying 
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( ).DH  can be considered as the squared gain function of the equivalent filter for a filter cascade.  

Apart from the above, there are other families of smooth wavelet bases that provide compactly 

supported orthonormal wavelets and are continuously differentiable, like those proposed by 

Stromberg, Meyer and Battle (Ogden, 1997).  

An Illustration (Ghosh et al (2010), and Paul et al (2011)) 

To estimate the trend using wavelet methodology, Indian monsoon rainfall data from 1879 to 

2006 is used.Monsoon rainfall is calculated as the total daily rainfall from June 1st to 

September 30th each year.The data set is collected from the official website of the Indian 

Institute of Tropical Meteorology, Pune (www.tropmet.res.in). 

This rainfall data shows cyclical fluctuations along with a possible declining trend. 

The trend in monsoon rainfall has been estimated using both the ARIMA method and twavelet 

approach. Various types of wavelets have been applied to analyze the data on a scale-by-scale 

basis.  This helps to highlight the localized variations present in the dataset. 

Modelling of rainfall data in the framework of autoregressive process  

Assuming presence of deterministic linear trend in the rainfall series, following model is fitted:  

     tt tY  ++= , t = 1, 2, …, T                                                     (18) 

 where t ’s are uncorrelated with zero mean and constant variance 2

 . Let   

http://www.tropmet.res.in/
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                            tYe tt  ˆˆˆ −−=  

The fitted trend equation is obtained as: 

    Yt = 863.718 – 0.234 t 

                                            (14.226)    (0.191)  

where the values within brackets ( ) denote corresponding standard errors of estimates. The 

trend is not significant at 5% level of significance. The graph of trend is displayed in Fig. 3.  

 

                  

Fig. 3. Trend in Indian monsoon rainfall data 

   

 Trend analysis through wavelet approach 

The discrete wavelet transform (DWT) and multiresolution analysis (MRA) were performed 

using both the Haar wavelet and the Daubechies 4 (D4) wavelet. The resulting DWT 

coefficients are illustrated in Figures 5 and 6. These coefficients represent differences of 

various orders of weighted averages of segments of the time series 𝑋𝑡 localized in time. The 

wavelet coefficients are displayed as upward or downward bars, whose magnitudes correspond 

to the strength of the localized features. At level 1 (the lowest resolution), the number of 

coefficients is half the original number of data points, and this number continues to halve at 

each subsequent level (Nason and Sachs, 1999). 

The upper levels of the plot contain high-frequency components, while the lower levels 

represent low-frequency (smooth) components. Since wavelet coefficients vary over time, they 

effectively capture time-localized changes in the series. Abrupt structural changes or 

discontinuities can be detected by observing vertical clusters of large coefficients across 

resolution levels. These coefficients allow the original time series to be perfectly reconstructed 

using the inverse discrete wavelet transform (IDWT). These patterns are further corroborated 

by the multiresolution analysis (MRA) of the time series, as shown in Figures 7 and 8. 
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 Fig. 5. DWT by D4 wavelet at level 6  
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Fig. 6. DWT by Haar wavelet at level 6  

The estimate of trend of the rainfall data computed by Haar and D4 wavelets for the levels 

6 are given below (Figure 9-10). As the level increases the declining global trend present in the 

data set is depicted clearly. 
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Fig. 7. MRA by D4 wavelet at level 6 
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Fig. 8. MRA by Haar wavelet at level 6 
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Fig. 9. Estimate of trend by Haar wavelet at level 6 

 
Fig. 10. Estimate of trend by Daubechies (D4) wavelet at level 6 

 

 

The discrete wavelet transform (DWT) and multiresolution analysis (MRA) of India’s 

monsoon rainfall time-series data reveal differential behaviours at different time epochs at 

different scales. Two wavelets namely; Daubechies (D4) and Haar wavelets are used for 

estimation of trend in the rainfall data.  It is found that the monsoon rainfall in India is showing 

a declining trend over the years, which can have very serious repercussions from “Global 

Warming” point of view. This important feature, however, could not be captured by ARIMA 

methodology. 

Recently, the algorithm of wavelet based models including stochastic models and machine 

learning techniques have been proposed and relevant R packages have been developed for the 

ease of application in real data. Few of the R packages are:  

https://CRAN.R-project.org/package=WaveLetLongMemory  

https://CRAN.R-project.org/package=WaveletArima  

https://CRAN.R-project.org/package=WaveletANN  

https://CRAN.R-project.org/package=WaveletGARCH  

https://CRAN.R-project.org/package=WaveletSVR  

https://CRAN.R-project.org/package=WaveletRF  

 

R code for application of ARIMA model 

library(WaveletArima) 

train<-ts[c(1:(length(ts)*0.9))] #train data 

test<-ts[-c(1:(length(ts)*0.9))] #test data 

 

###Wavelet ARIMA 

https://cran.r-project.org/package=WaveLetLongMemory
https://cran.r-project.org/package=WaveletArima
https://cran.r-project.org/package=WaveletANN
https://cran.r-project.org/package=WaveletGARCH
https://cran.r-project.org/package=WaveletSVR
https://cran.r-project.org/package=WaveletRF
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WaveletARIMA<-WaveletFittingarma(ts=train, filter 

='la8',Waveletlevels=floor(log(length(train))), 

MaxARParam=5,MaxMAParam=5,NForecast=length(test)) 

 

Fitted<-WaveletARIMA$FinalPrediction 

Forecast<-WaveletARIMA$Finalforecast 

 

# Accuracy 

MAPE_train<-MLmetrics::MAPE(Fitted, train) 

MAPE_test<-MLmetrics::MAPE(Forecast, test) 

 

RMSE_train<-MLmetrics::RMSE(Fitted, train) 

RMSE_test<-MLmetrics::RMSE(Forecast, test) 

 

 

### Wavelet ANN 

library(WaveletANN) 

WaveletANN<-

WaveletFittingann(ts=train,Waveletlevels=floor(log(length(train))),Filter='d4', 

                                   nonseaslag=5,hidden=3,NForecast=length(test)) 

 

Fitted<-WaveletANN$FinalPrediction 

Forecast<-WaveletANN$Finalforecast 

# Accuracy 

MAPE_train<-MLmetrics::MAPE(Fitted[-c(1:5)], train[-c(1:5)]) 

MAPE_test<-MLmetrics::MAPE(Forecast, test) 

 

RMSE_train<-MLmetrics::RMSE(Fitted[-c(1:5)], train[-c(1:5)]) 

RMSE_test<-MLmetrics::RMSE(Forecast, test) 
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Artificial Intelligence (AI) is the field of science that creates machines or devices that can 

mimic intelligent behaviors of human being. The term AI is frequently applied to the project of 

developing systems endowed with the intellectual processes characteristic of humans, such as the 

ability to reason, discover meaning, generalize, or learn from past experience. On the other hand, 

machine learning is a type of Artificial Intelligence that provides computers with the ability to learn 

without being explicitly programmed. More formally, Machine learning (ML) is defined as a field 

of the computer sciences that gives computers the ability to learn without being explicitly 

programmed (Samuel, 1959). Arthur Samuel (1959) was a computer pioneer who wrote first self-

learning program, which played checkers-learned from “experience”.  Machine learning (ML) is a 

subset of artificial intelligence (AI) that uses statistical methods to enable machines to improve with 

experience. This involves combining programming with probability and statistics. Machine 

learning is broadly classified into categories such as classification and regression. In classification, 

inputs are divided into two or more classes. Pattern recognition and data mining are integral parts 

of machine learning techniques. The regression aspect of ML is used to map data to a real-valued 

prediction variable. Time series modeling falls into the category of ML regression problems. 

  The MuCulloch and Pitts Model was proposed by Warren MuCulloch (neuroscientist) and Walter 

Pitts (logician) known as linear threshold gate, the MuCulloch and Pitts Model is called as first 

formal model of machine learning techniques (McCulloch and Pitts, 1943).  

 

   It is divided into 2 parts. The first part, g takes an input performs an aggregation and based on the   

aggregated value the second part, f makes a decision. 
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Suppose that If someone wants to predict their own decision, whether to watch a random cricket 

match on TV or NOT. The inputs are all Boolean i.e., {0,1} and my output variable is also Boolean 

{0: Will watch it, 1: Won’t watch it}, the following possibilities are prevailed;   

So, the inputs could be; 

x_1 could be is IPL On (I like IPL more) 

x_2 could be is It a Practice Match (I care less about Practice Match) 

x_3 could be is MI Playing (I am a big fan of MI and so on.) …………… and so on… 

g(x) is just doing a sum of the inputs — a simple aggregation. And theta here is called threshold 

parameter, for example, if I always watch the game when the sum turns out to be 2 or more, the 

theta is 2 here. This is called Threshold logic. 

               𝑔(𝑥1, 𝑥2, 𝑥3,…… . 𝑥𝑛) = 𝑔(𝑥) = ∑ 𝑥𝑖𝑛
𝑖=1  

𝑦 = 𝑓(𝑔(𝑥)) = 1    𝑖𝑓  𝑔(𝑥) ≥ 0         = 0  𝑖𝑓 𝑔(𝑥) < 0 

Frank Rosenblatt (1958) introduced a network composed of the units that were enhanced version 

of McCulloch-Pitts Threshold Logic Unit (TLU) model by adding an extra input that represents 

bias and termed it as perceptron model. 

𝑠𝑢𝑚 =∑𝑋𝑖 𝑊𝑖 

𝑛

𝑖=1

+ 𝑏 

After, McCulloch-Pitts Threshold Logic Unit (TLU) model the neural network concepts become 

researchable 

issue and evolved as most promising and robust AI/ML techniques utilized in almost all areas.   

On the other hand, the time series refers to an important statistical technique for studying the trends 

and characteristics of collecting data points indexed in chronological order. An ordered sequence of 

values of a variable at equally spaced time intervals are called as time series (TS) and analysis of 

such data are termed as time series analysis (TSA). The main aim of time series modeling is to 

carefully collect and rigorously study the past observations of a time series to develop an appropriate 

model which describes the inherent structure of the series.   

Once a model is constructed, it can be employed to generate future values of the series, i.e., for 

forecasting. Time series forecasting refers to the process of predicting future observations based on 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 145 - 
 

past patterns. Owing to its critical importance across diverse practical domains—such as business, 

finance, economics, science, and engineering—forecasting of time series data has become a major 

area of research. One of the defining features of time series is the dependence between successive 

observations, and this dependence forms the basis for building predictive models. 

ARIMA Model  

Over time, numerous efforts have been made to enhance forecasting accuracy by developing more 

robust models. The effectiveness of such models often depends on the length of historical data used 

in the analysis. According to Box and Jenkins, a minimum of 50 observations is typically required to 

achieve reliable results in time series modeling. Among classical time series models, the 

Autoregressive Integrated Moving Average (ARIMA) model is one of the most extensively applied. 

Its popularity stems from its linear structure, statistical tractability, and the systematic model 

identification procedure offered by the well-known Box-Jenkins methodology (Box and Jenkins, 

1970). For a comprehensive overview of exponential smoothing methods, readers may refer to 

Makridakis et al. (1998), while Pankratz (1983) provides a wide array of case studies illustrating 

ARIMA modeling. A detailed treatment of ARIMA and its related concepts is presented in Box et 

al. (1994). Since many real-world time series are non-stationary, differencing is often introduced to 

achieve stationarity. The integration of the differencing component into the ARMA model leads to 

the ARIMA(p,d,q) formulation, where d represents the order of differencing. A time series Yt  is said 

to follow an integrated ARMA process if ∆𝑌𝑡 = (1 − 𝐵)𝑑𝜀𝑡. The ARIMA model is expressed as 

follows; 

                       ∅(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡                           (1) 

Where, 𝜀𝑡~𝑊𝑁 (0, 𝜎
2)  and WN is the white noise. The Box-Jenkins ARIMA model building 

consists of three steps viz., identification, estimation and diagnostic checking. 

Artificial Neural Network (ANN) for Time series 

The Artificial Neural Network (ANN) architecture specifically designed for time series analysis is 

referred to as the Time Delay Neural Network (TDNN). Time series phenomena can be 

mathematically modeled using neural networks that incorporate an implicit functional representation 

of time. In contrast to static neural networks such as the multilayer perceptron (MLP), which are 

inherently non-dynamic, TDNN introduces dynamic properties by including temporal dependencies 

(Haykin, 1999). One of the simplest and most effective strategies to adapt neural networks for time 
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series forecasting involves the incorporation of time delays, also known as time lags, into the input 

layer of the network. These lagged inputs allow the model to capture temporal patterns and 

autocorrelations present in the data. The TDNN represents a class of such feed-forward neural 

architectures capable of handling time-dependent data structures. The general mathematical 

formulation for the final output 𝑌𝑡 of a multi-layer feed-forward TDNN is expressed as follows: 

𝑌𝑡 = 𝛼0 + ∑ 𝛼𝑗
𝑞
𝑗=1 𝑔(𝛽0𝑗 +∑ 𝛽𝑖𝑗𝑌𝑡−𝑝

𝑝
𝑖=1 ) + 𝜀𝑡            (2) 

where, 𝛼𝑗(𝑗 = 0,1,2, … , 𝑞) and 𝛽𝑖𝑗(𝑖 = 0,1,2, … , 𝑝, 𝑗 = 0,1,2, . . . , 𝑞) are the model parameters, also 

called as the connection weights, p is the number of input nodes,q is the number of hidden nodes and 

𝑔 is the activation function. The architecture of neural network is represented in figure 1.  

 

Figure1: Artificial Neural Network Structure 

Support Vector Machine (SVM) for Time Series  

Support Vector Machine (SVM) is a supervised machine learning technique, originally developed 

for solving linear classification problems. Later, in 1997, Vapnik extended the concept to handle 

regression problems by introducing the ε-insensitive loss function (Vapnik, 1997). This extension 

led to the development of Support Vector Regression (SVR), and when applied to nonlinear 

regression estimation problems, it is referred to as the Nonlinear Support Vector Regression 

(NLSVR) model. 

The core idea behind NLSVR is to transform the original input time series data into a high-

dimensional feature space, where a regression model is constructed. This transformation enables 

the model to capture nonlinear relationships that may not be apparent in the original input space. 

Let us consider a dataset represented 𝑍 = {𝑥𝑖 𝑦𝑖}𝑖=1
𝑁  where 𝑥𝑖 ∈ 𝑅

𝑛is the input vector, yi  is the 

corresponding scalar output, and NNN is the size of the dataset. The general form of the Nonlinear 

Support Vector Regression estimation function is given as follows: 

𝑓(𝑥) = 𝑊𝑇𝜙 (𝑥) + 𝑏       (3) 
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where 𝜙(.): 𝑅𝑛→ 𝑅𝑛ℎ is a nonlinear mapping function which map the original input space into a 

higher dimensional feature space vector. W∈𝑅𝑛ℎ is weight vector, 𝑏 is bias term and superscript T 

denotes the transpose. 

 

 

Brock-Dechert-Scheinkman (BDS) test for testing nonlinearity  

BDS (Brock et al. 1996), test utilizes the concept of spatial correlation from chaos 

theory. The computational procedure is given as follows 

i) Let the considered time series is 

  1 2 3[ , , ,..., ]i Nx x x x x=            (4) 

The next step is to specify a value of m (embedding dimension), embed the time series 

into m dimensional vectors, by taking each m successive points in the series. This transforms 

the series of scalars into a series of vectors with overlapping entries 

1 1 2

2 2 3 1

1

( , ,..., )

( , ,..., )
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( , ,..., )
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m

m

m

m

N m N m N m N
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x x x x

+

− − − +

=

=

=

        (5) 

ii) In the third step correlation integral is computed, which measures the spatial correlation 

among the points, by adding the number of pairs of points ( i, j), where 1≤ i ≤ N and 1≤ 

j≤N , in the m-dimensional space which are “close”  in the sense that the points are 

within a radius or tolerance  of each other. 

, , ;

1

( 1)
m i j

i jm m

C I
N N

 


=
−
                                    (6) 

 Where Ii,j;= 1 if m m

i jx x − 
    

 = 0 otherwise 

iii) If the time series is i.i.d. then C ,m [C ,1]
m
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iv) The BDS test statistics is as follows 

, ,1

,

,

[ ( ) ]m

m

m

m

N C C
BDS

V

 





−
=          (7) 

Where, 

1
2 2 2 2 2 2
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The choice of m and  depends on number of data. The null hypothesis is data are 

independently and identically distributed (i.i.d.) against the alternative hypothesis the data are 

not i.i.d. this implies that the time series is non-linearly dependent. BDS test is a two-tailed 

test; the null hypothesis should be rejected if the BDS test statistic is greater than or less than 

the critical values.  

K-Nearest Neighbors (KNN)  

The K-Nearest Neighbors (KNN) algorithm is one of the simplest, yet highly effective, 

supervised machine learning methods used for both classification and regression tasks. It is a 

non-parametric and instance-based learning algorithm, meaning it makes no explicit 

assumptions about the underlying data distribution and relies directly on the training data to 

make predictions. 

The basic idea behind KNN is intuitive: 

To predict the class (or value) for a new data point, the algorithm searches for the k training 

samples closest to it in the feature space, where “closest” is usually defined using distance 

metrics like Euclidean distance, Manhattan distance, or Minkowski distance. 

For classification, the algorithm assigns the class label that is most common among these k 

neighbors — this is called majority voting. 

For regression, the algorithm typically predicts the output as the average (or sometimes the 

weighted average) of the output values of the k nearest neighbors. 
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Advantages of KNN: 

• Simple to understand and easy to implement. 

• Naturally handles multi-class problems. 

• Works well with non-linear data structures and does not require a training phase. 

Limitations of KNN: 

• Computationally expensive for large datasets, as distance must be calculated for all 

training points at prediction time. 

• Sensitive to irrelevant features and the choice of distance metric. 

• Performance depends strongly on the choice of k (number of neighbors) and feature 

scaling. 

In time regression applications, KNN can be adapted to forecast future values by comparing 

the current pattern to historical patterns and averaging the outcomes of the closest matches. 

This approach is often called KNN time series forecasting. 

# ======================================== 

# K-Nearest Neighbors (KNN) in R 

# Classification & Regression Example 

# ======================================== 

# Install & Load Packages 

install.packages("class")   # For KNN classification 

install.packages("FNN")     # For KNN regression 

library(class) 

library(FNN) 

# Use the built-in iris dataset 

data(iris) 

# Split data into training & testing sets 

set.seed(123)  # For reproducibility 

index <- sample(1:nrow(iris), size = 0.7 * nrow(iris)) 

train_data <- iris[index, ] 

test_data <- iris[-index, ] 

# ---------------------------- 

# KNN Classification 

# ---------------------------- 

# Prepare predictors & labels 

train_X_class <- train_data[, 1:4] 

train_Y_class <- train_data$Species 

test_X_class <- test_data[, 1:4] 

test_Y_class <- test_data$Species 

# Normalize features 
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train_X_class <- scale(train_X_class) 

test_X_class <- scale(test_X_class, center = attr(train_X_class, "scaled:center"), scale = 

attr(train_X_class, "scaled:scale")) 

# Apply KNN classification (k = 5) 

k_value <- 5 

pred_Y_class <- knn(train = train_X_class, test = test_X_class, cl = train_Y_class, k = 

k_value) 

# Confusion Matrix & Accuracy 

conf_matrix <- table(Predicted = pred_Y_class, Actual = test_Y_class) 

print(conf_matrix) 

accuracy <- mean(pred_Y_class == test_Y_class) 

print(paste("Classification Accuracy:", round(accuracy * 100, 2), "%")) 

# ---------------------------- 

# KNN Regression 

# ---------------------------- 

# Example: Predict Sepal.Length from other features 

train_X_reg <- train_data[, 2:4] 

train_Y_reg <- train_data$Sepal.Length 

test_X_reg <- test_data[, 2:4] 

test_Y_reg <- test_data$Sepal.Length 

# Normalize features 

train_X_reg <- scale(train_X_reg) 

test_X_reg <- scale(test_X_reg, center = attr(train_X_reg, "scaled:center"), scale = 

attr(train_X_reg, "scaled:scale")) 

# Apply KNN regression (k = 5) 

knn_reg <- knn.reg(train = train_X_reg, test = test_X_reg, y = train_Y_reg, k = k_value) 

# Predicted values & RMSE 

pred_Y_reg <- knn_reg$pred 

rmse <- sqrt(mean((pred_Y_reg - test_Y_reg)^2)) 

print(paste("Regression RMSE:", round(rmse, 3))) 

R code to implement ML TS models 

nrow(available.packages()) 

rm(list=ls()) 

library(forecast) 

library(e1071) 

library(tseries) 

library(ggplot2) 

library(tidyverse) 

library(fNonlinear) 

library(lmtest) 

g=read.table(file="rf.txt",header=T) 

head(g) 

dim(g) 

Box.test(g$Rainfall) 

rf1=read.table(file="rf1.txt",header=T) 

head(rf1) 

ggplot(data = rf1, aes(x = Month, y = Rainfall) )+ geom_line(color = "#00AFBB", size = 1) + 

 labs(x = "Months", y = "Rainfall") + ggtitle("TS Plot of Monthly Rainfall Data") 
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bdsTest(g$Rainfall, m = 3, eps = NULL, title = NULL, description = NULL) 

dim(g) 

a1=g$Rainfall[1:1416] 

a2=g$Rainfall[1417:1428] 

Box.test(a1) 

acf(a1) 

pacf(a1) 

############# ARIMA Fitting ######### 

m1=auto.arima(a1) 

coeftest(m1) 

accuracy(m1) 

Box.test(m1$residuals) 

fitted1=m1$fitted 

write.csv(as.data.frame(fitted1), file="ARIMA_Fitted.csv") 

f1=forecast(m1, h=12) 

f11=data.frame(f1) 

f12=f11$Point.Forecast 

mse11=abs(a2-f12)^2 

mse1=mean(mse11) 

rmse1=sqrt(mse1) 

rmse1 

write.csv(as.data.frame(f12), file="ARIMA_Forecasted.csv") 

################### ANN ########## 

m2=nnetar(a1,6, P=1, 10, repeats=25, xreg=NULL, lambda=NULL, model=NULL, 

subset=NULL, scale.inputs=TRUE,  maxit=150) 

m2 

accuracy(m2) 

fitted2=m2$fitted 

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv") 

Box.test(m2$residuals) 

f2=forecast(m2, h=12) 

f21=data.frame(f2) 

f22=f21$Point.Forecast 

mse21=abs(a2-f22)^2 

mse2=mean(mse21) 

rmse2=sqrt(mse2) 

rmse2 

write.csv(as.data.frame(f22), file="ANN_Forecasted.csv") 

m3=nnetar(a1) 

accuracy(m3) 

m3 

fitted3=m3$fitted 

f3=forecast(m3, h=12) 

f31=data.frame(f3) 

f32=f31$Point.Forecast 

mse31=abs(a2-f32)^2 

mse3=mean(mse31) 

rmse3=sqrt(mse3) 
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rmse3 

Box.test(m3$residuals) 

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv") 

write.csv(as.data.frame(f32), file="ANN_Forecasted.csv") 

################### SVR ########## 

X1=g$Rainfall[1:1416] 

Y1=g$Rainfall[2:1417] 

X2=g$Rainfall[1416:1427]  

Y2=g$Rainfall[1417:1428]  

m4=svm(X1,Y1,degree = 3,cost = 45.69, nu=0.5,tolerance = 0.00001,epsilon = 0.00001) 

summary(m4) 

fitted4 <- fitted(m4)   ## Fitted values   

mse41=abs(Y1-fitted4)^2 

mse4=mean(mse41) 

rmse4=sqrt(mse4) 

rmse4 

Box.test(m4$residuals) 

s3=predict(model,X2) 

mse61=abs(Y2-s3)^2 

mse6=mean(mse61) 

rmse6=sqrt(mse6) 

rmse6 

############# ARIMA ########### 

##########Significance Comparison ########## 

########## For testing set ###### 

dm.test(m1$residuals, m2$residuals) 

dm.test(m1$residuals, m3$residuals) 

dm.test(m1$residuals, m4$residuals) 

######## You have to do it for testing set also ##### 

########### Hybrid Modeling ########## 

r1=m1$residuals 

bdsTest(r1, m = 3, eps = NULL, title = NULL, description = NULL) 

n1=nnetar(r1) 

n1f=n1$fitted 

c1=(m1$fitted)+n1f 

c11=c1[32:1416] 

a11=a1[32:1416] 

mse51=abs(a11-c11)^2 

mse5=mean(mse51) 

rmse5=sqrt(mse5) 

rmse5 

############# Comparison########### 

accuracy(m1) 

accuracy(m2) 

rmse4 

rmse5 

################### Fitted Plots ########## 

rm(list=ls()) 
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library(tidyverse) 

library(readxl) 

library(ggplot2) 

Data1<-as.data.frame(read_excel("Fitted_Plot.xlsx", col_names = TRUE,sheet = "data")) 

head(Data1) 

Date <- seq(as.Date("2020/1/06"), as.Date("2020/06/30"), "day") 

head(Data1) 

RF=Data1$RF 

Actual=Data1$Actual 

Model1=Data1$Model1 

Model2=Data1$Model2 

Model3=Data1$Model3 

Data2=data.frame(Date, RF, Actual, Model1, Model2, Model3) 

df <- Data2 %>% 

  select(Date, Actual, Model1, Model2, Model3) %>% 

  gather(key = "Models", value = "RF", -Date) 

tail(df) 

p1<-ggplot(df, aes(x = Date, y = RF)) + 

  geom_line(aes(color = Models), size = 1) + scale_x_date(date_labels = "%d/%b-%Y")+ 

labs(x = "Date", y = "RF")+ ggtitle("Actual v/s Fitted plot RF")+ 

  theme(plot.title = element_text(size = 11)) 

p1+geom_vline(xintercept = as.Date("2020-06-24"), color="blue4") 

Apart from Support Vector Regression (SVR), Artificial Neural Networks (ANN), and K-

Nearest Neighbors (KNN), there are several other widely used machine learning algorithms 

that are covered in separate chapters of this manual. These include Decision Trees, Random 

Forests, Gradient Boosting Machines, Naive Bayes Classifiers, Principal Component Analysis 

(PCA), and various Ensemble Learning methods. Each of these techniques provides unique 

approaches to classification, regression, and forecasting problems in agricultural and allied 

sciences. For deeper understanding, readers are encouraged to consult additional references 

such as The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman (2009); 

Pattern Recognition and Machine Learning by Bishop (2006); An Introduction to Statistical 

Learning by James et al. (2013); and relevant R documentation and vignettes available online. 
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Introduction 

The artificial intelligence (AI) is the field of science that creates machines or devices that can 

mimic intelligent behaviors of human being. The term AI is frequently applied to the project 

of developing systems endowed with the intellectual processes characteristic of humans, such 

as the ability to reason, discover meaning, generalize, or learn from past experience. On other 

hand, machine learning is a type of Artificial Intelligence that provides computers with the 

ability to learn without being explicitly programmed. More formally, Machine learning (ML) 

is defined as a field of the computer sciences that gives computers the ability to learn without 

being explicitly programmed (Samuel, 1959). Arthur Samuel (1959) was a computer pioneer 

who wrote first self-learning program, which played checkers-learned from “experience”. ML 

is a subset of AI technique which use statistical methods to enable machines to improve with 

experience. This mean that combine: Programing+Probability and Statistics. Machine learning 

is broadly classified into two or more classes, namely, classification and regression; in 

classification the inputs are divided into two or more classes. The pattern recognition and data 

mining are part of the machine learning techniques. The Regression part of ML used to map a 

data to a real valued prediction variable. The time series modeling falls into the category of 

ML regression problem.  

The MuCulloch and Pitts Model was proposed by Warren MuCulloch (neuroscientist) and 

Walter Pitts (logician) in 1943 known as linear threshold gate, the MuCulloch and Pitts Model 

is called as first formal model of machine learning techniques.  
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It is divided into 2 parts. The first part, g takes an input performs an aggregation and based on 

the aggregated value the second part, f makes a decision. 

Suppose that If someone wants to predict their own decision, whether to watch a random cricket 

match on TV or NOT. The inputs are all Boolean i.e., {0,1} and my output variable is also 

Boolean {0: Will watch it, 1: Won’t watch it}, the following possibilities are prevailed;   

So, the inputs could be; 

x_1 could be is IPL On (I like IPL more) 

x_2 could be is It a Practice Match (I care less about Practice Match) 

x_3 could be is MI Playing (I am a big fan of MI and so on.) …………… and so on… 

g(x) is just doing a sum of the inputs — a simple aggregation. And theta here is called threshold 

parameter, for example, if I always watch the game when the sum turns out to be 2 or more, 

the theta is 2 here. This is called Threshold logic. 

                                                          𝑔(𝑥1, 𝑥2, 𝑥3,…… . 𝑥𝑛) = 𝑔(𝑥) = ∑ 𝑥𝑖𝑛
𝑖=1  

𝑦 = 𝑓(𝑔(𝑥)) = 1    𝑖𝑓  𝑔(𝑥) ≥ 0 

                                                                                       = 0  𝑖𝑓 𝑔(𝑥) < 0 

In late 1950s, Frank Rosenblatt introduced a network composed of the units that were enhanced 

version of McCulloch-Pitts Threshold Logic Unit (TLU) model by adding an extra input that 

represents bias and termed it as perceptron model. 

𝒔𝒖𝒎 =∑𝑿𝒊 𝑾𝒊 

𝒏

𝒊=𝟏

+ 𝒃 

After, McCulloch-Pitts Threshold Logic Unit (TLU) model the neural network concepts 

become researchable issue and evolved as most promising and robust AI/ML techniques 

utilized in almost all areas.   

On other hand, the time series refers to an important statistical technique for studying the trends 

and characteristics of collecting data points indexed in chronological order. An ordered 

sequence of values of a variable at equally spaced time intervals are called as time series (TS) 

and analysis of such data are termed as time series analysis (TSA). The main aim of time series 

modeling is to carefully collect and rigorously study the past observations of a time series to 
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develop an appropriate model which describes the inherent structure of the series. This model 

is then used to generate future values for the series, i.e. to make forecasts. Time series 

forecasting thus can be termed as the act of predicting the future by understanding the past. 

Due to the indispensable importance of time series forecasting in numerous practical fields 

such as business, economics, finance, science and engineering, etc. Important properties of 

time series data are the successive observations under considerations are dependent. Much 

efforts have been made by researchers over many years to develop the efficient forecasting 

models to improve the prediction accuracy of the models involving time series data. The 

accuracy of forecasting models is depending on number of observations used in time series 

analysis, it is generally believed that at least 50 observations are necessary to perform TSA as 

stated by Box and Jenkins who were pioneers in time series modeling.  

One of the most important and widely used classical time series model is the Autoregressive 

Integrated Moving Average (ARIMA) model. The popularity of the ARIMA model is due to 

its linear statistical properties as well as the popular Box-Jenkins methodology (Box and 

Jenkins 1970) for model building procedure.  A good account on exponential smoothing 

methods is given in Makridakis et al. (1998). A practical treatment on ARIMA modeling along 

with several case studies can be found in Pankratz (1983). A reference book on ARIMA and 

related topics are rigorously explained in Box et al. (1994). 

Artificial Neural Network for Time series: 

Artificial Neural Networks (ANNs) applied to time series analysis are often referred to 

as Time Delay Neural Networks (TDNNs). Time series data can be effectively modeled using 

neural networks that incorporate an implicit representation of time. Unlike static neural 

networks, such as the multilayer perceptron, time delay networks introduce dynamic behavior 

into the model (Haykin, 1999). A straightforward method for constructing a neural network for 

time series forecasting is by incorporating time delays, or time lags, into the input layer. These 

lags serve as temporal inputs, enabling the network to capture dependencies over time. The 

Time Delay Neural Network is one such architecture designed for this purpose. The following 

is the general formulation for the final output Yt  of a multi-layer feedforward time delay neural 

network. 

 𝑌𝑡 = 𝛼0 + ∑ 𝛼𝑗
𝑞
𝑗=1 𝑔(𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑌𝑡−𝑝

𝑝
𝑖=1 ) + 𝜀𝑡                                            
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where, 𝛼𝑗(𝑗 = 0,1,2, … , 𝑞)  and 𝛽𝑖𝑗(𝑖 = 0,1,2, … , 𝑝, 𝑗 = 0,1,2, . . . , 𝑞)  are the model 

parameters, also called as the connection weights, p is the number of input nodes,q is the 

number of hidden nodes and 𝑔 is the activation function. The architecture of neural network is 

represented in figure 1.  

 

Fig.1: Artificial Neural Network Structure 

The Back Propagation Algorithm:  

The Multilayer Perceptron (MLP) is trained using supervised learning algorithms, with 

backpropagation being the most widely used method. This algorithm adjusts the network’s 

weights and thresholds based on the training data to minimize prediction error. The weight of 

the 𝑊𝑖𝑗 . These connection weights can be conveniently organized into a weight matrix W, 

where each element corresponds to a specific connection. This matrix effectively represents 

the network’s connectivity pattern, which defines its overall architecture. In the output layer, 

each unit determines its activation by following a two-step process. The first step involves 

computing the total weighted input 𝑋𝑗  using the following formula: 

 𝑋𝑗 = ∑𝑦𝑖𝑊𝑖𝑗        

Where 𝑦𝑖is the activity level of the jth unit in the previous layer and 𝑊𝑖𝑗is the weight 

of the connection between the ith and the jth unit. Next, the unit calculates the activity 𝑦𝑗using 

some function of the total weighted input. Generally, we use the sigmoid function: 

 𝑦𝑖 = [1 + 𝑒−𝑥𝑗]−1                                                              
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Once the activities of all outputs units have been determined, the network computes 

the error E, which is defined by the expression: 

 𝐸 =
1

2
∑ (𝑦𝑖 − 𝑑𝑗)

2
𝑗         

where 𝑦𝑖 is the activity level of the jth unit in the top layer and 𝑑𝑗 is the desired output 

of the jth unit. 

The back propagation algorithm consists of four steps: 

i. Calculate how fast the error changes as the activity of an output unit is changed. This 

error derivative (EA) is the difference between the actual and the desired activity. 

 𝐸𝐴𝑗 =
𝜕𝐸

𝜕𝑦𝑖
= 𝑦𝑖 − 𝑑𝑗      

ii. Compute how fast the error changes as the total input received by an output unit is 

changed. This quantity (EI) is the answer from step (i) multiplied by the rate at which 

the output of a unit changes as its total input is changed. 

   𝐸𝑗
𝐼 =

𝜕𝐸

𝜕𝑥𝑖
=

𝜕𝐸

𝜕𝑦𝑖
×

𝜕𝐸

𝜕𝑥𝑖
= 𝐸𝐴𝑗𝑦𝑖(1 − 𝑦𝑗)             

iii. Compute how fast the error changes as a weight on the connection into output unit is 

changed.  This quantity (EW) is the answer from, step (ii) multiplied by the activity 

level of the unit from which the connection emanates. 

 𝐸𝑊𝑖𝑗 =
𝜕𝐸

𝜕𝑊𝑖𝑗
=

𝜕𝐸

𝜕𝑋𝑖
×

𝜕𝑋𝑖

𝜕𝑊𝑖𝑗
= 𝐸𝑗

𝐼𝑦𝑖     

iv. Compute how fast the error changes as the activity of a unit in the previous layer is 

changed. This crucial step allows back propagation to be applied to multilayer 

networks.  When the activity of a unit in the previous layer changes, it affects the 

activities of all the output units to which it’s connected. So to computer the overall 

effect on the error, we add together all these separate effects on outputs units. But each 

effect is simple to calculate. It is the answer in step (iii) multiplied by the weight on the 

connection to that output unit. 
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 𝐸𝐴𝑗 =
𝜕𝐸

𝜕𝑦𝑖
∑

𝜕𝐸

𝜕𝑥𝑖
 ×

𝜕𝑥𝑖

𝜕𝑦𝑖
= ∑ 𝐸𝑗

𝐼
𝑗𝑗 𝑊𝑖𝑗     

By using steps (ii) and (iv), we can convert the EAs of one layer of units into EAs for 

the previous layer. This procedure can be repeated to get the EAs for as many previous layers 

as desired. Once we know the EA of a unit, we can use steps (ii) and (iii) to compute the EWs 

on its incoming connections. 

Activation functions 

The activation function is also known as the transfer function. It determines the 

relationship between input and outputs of a node and a network. The activation function is 

responsible for introducing amount of nonlinearity that is valuable for most ANN applications.  

Roughly speaking, any differentiable function can be an activation function.  Following are the 

commonly used activation functions; 

i. The sigmoidal (logistic) function 

 𝑓(𝑦) =
1

1+𝑒−𝑦
                                                              

ii. The hyperbolic tangent (tanh) function 

 𝑓(𝑦) =
𝑒𝑦−𝑒−𝑦

𝑒𝑦+𝑒−𝑦
         

iii.  The sine or cosine function 

 𝑓(𝑥) = sin(𝑦) or 𝑓(𝑥) = cos(𝑦)     

iv.  The linear function 

 𝑓(𝑥) = 𝑦                       

It is suggested to use the suitable activation function based on nature of the data.  

Training sample and test sample 

For building an ANN model, Training and test sample are must require. The training 

sample is used for ANN model development and test sample is adopted for evaluating the 

forecasting ability of the model. Sometimes a third one called the validation sample is also 
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utilized to avoid the over fitting problem or to determine the stopping point of the training 

process. It is usually preferred to use one test set for both validation and testing purposes if the 

data set is small. In our view, the selection of the training and test sample may affect the 

performance of ANNs.  The main question is to divide the data into the training and test sets.  

Although there is no definite answer to this problem, several factors such as the problem 

characteristics, the data type and the size of the available data should be considered while 

dividing the data set.  Most of the time it is in practice that training and test sets are selected 

based on the rule of 90:10, 80:20 or 70:30.  

Illustration: 

(Results from Rathod et al 2018) 

Yearly data on yield (MT/ha) of mango was collected from data base of National Horticulture 

Board (NHB) and http://www.indiastat.com. For forecasting yield of mango of Karnataka, data 

from 1980 to 2014 were considered. Data from 1980-2011 were used for model building and 

2012 to 2014 were used to check the forecasting performance of the models.  The time series 

plot of mango yield time series of Karnataka is depicted in fig.4. The ARIMA model has been 

built for mango yield of Karnataka, India. The original time series was found to be non-

stationary, so first differencing was done to make the stationary series time series. The adequate 

model i.e. ARIMA (011) has been identified based on Autocorrelation and Partial 

Autocorrelation Function (ACF and PACF) plots. The parameters of ARIMA models are 

estimated using maximum likelihood methods are given in table 1. Further the model 

performance in training set and testing data set is given in tables 5 and 6.  
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Fig. 4: Time series plot of mango yield time series 

 

Table 1:  Parameter estimation of ARIMA (0 1 1) for Mango Yield time series. 

 

Parameter Estimate 
Standard 

Error 
t Value Approx. Pr > |t| Lag 

P(Resi.) at 6 Lag 

Constant  0.033 0.038 0.87 0.382 0 0.240 

MA 1 0.581 0.161 3.64 0.003 1 

 

 

The ANN was fitted to mango yield time series of Karnataka and the model specifications are 

given in table 2 and 3. Further the model performance in training set and testing data set is 

given in tables 5 and 6.  

 

Table 2: ANN Model Specifications. 

 

Time series Activation function  Time 

delay 

No. of 

hidden 

nodes 

Total No. 

of 

Parameter

s 

hidden 

Layer 

output layer 

Mango Yield Sigmoidal Linear 2 4 17 

 

 

Table 4: Comparison of forecasting performance of all models in training data set. 

 

Criteria ARIMA ANN 

MAPE 3.83 2.89 

 

 

Table 5: Comparison of forecasting performance of all models in testing data set. 

 

Year 
Actual 

Forecast 

ARIMA ANN 

2012 10.84 11.75 9.68 

2013 10.04 11.15 10.14 

2014 9.93 8.67 10.37 

MAPE 10.71 5.37 

 

The ANN model outperformed the ARIMA model in terms of MAPE in both training and 

testing data sets. 
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Conclusion:  

The main finding of this study is the artificial neural network has performed better than 

autoregressive moving average model in both training and testing sets.   However, this results 

cannot be treated as generalized as there are no universal approximations are existing in terms 

of model performance. But for nonlinear time series data machine learning techniques are 

feasible alternatives which performs better than linear time series models. These models can 

be further employed in varying autoregressive orders in different real life data sets so that 

practical validity of the model can be well established.  

R codes: 

nrow(available.packages()) 

rm(list=ls()) 

library(forecast) 

library(e1071) 

library(tseries) 

library(ggplot2) 

library(tidyverse) 

library(fNonlinear) 

library(lmtest) 

g=read.table(file="rf.txt",header=T) 

head(g) 

dim(g) 

Box.test(g$Rainfall) 

rf1=read.table(file="rf1.txt",header=T) 

head(rf1) 

ggplot(data = rf1, aes(x = Month, y = Rainfall) )+ geom_line(color = "#00AFBB", size = 1) + 

 labs(x = "Months", y = "Rainfall") + ggtitle("TS Plot of Monthly Rainfall Data") 

bdsTest(g$Rainfall, m = 3, eps = NULL, title = NULL, description = NULL) 

dim(g) 

a1=g$Rainfall[1:1416] 

a2=g$Rainfall[1417:1428] 

Box.test(a1) 

acf(a1) 

pacf(a1) 

############# ARIMA Fitting ######### 

m1=auto.arima(a1) 

coeftest(m1) 

accuracy(m1) 

Box.test(m1$residuals) 

fitted1=m1$fitted 

write.csv(as.data.frame(fitted1), file="ARIMA_Fitted.csv") 

f1=forecast(m1, h=12) 
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f11=data.frame(f1) 

f12=f11$Point.Forecast 

mse11=abs(a2-f12)^2 

mse1=mean(mse11) 

rmse1=sqrt(mse1) 

rmse1 

write.csv(as.data.frame(f12), file="ARIMA_Forecasted.csv") 

 

################### ANN ########## 

m2=nnetar(a1,6, P=1, 10, repeats=25, xreg=NULL, lambda=NULL, model=NULL, 

subset=NULL, scale.inputs=TRUE,  maxit=150) 

m2 

accuracy(m2) 

fitted2=m2$fitted 

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv") 

Box.test(m2$residuals) 

f2=forecast(m2, h=12) 

f21=data.frame(f2) 

f22=f21$Point.Forecast 

 

mse21=abs(a2-f22)^2 

mse2=mean(mse21) 

rmse2=sqrt(mse2) 

rmse2 

write.csv(as.data.frame(f22), file="ANN_Forecasted.csv") 

m3=nnetar(a1) 

accuracy(m3) 

m3 

fitted3=m3$fitted 

f3=forecast(m3, h=12) 

f31=data.frame(f3) 

f32=f31$Point.Forecast 

mse31=abs(a2-f32)^2 

mse3=mean(mse31) 

rmse3=sqrt(mse3) 

rmse3 

Box.test(m3$residuals) 

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv") 

write.csv(as.data.frame(f32), file="ANN_Forecasted.csv") 

Suggested Readings 

Box, G.E.P. and Jenkins, G. (1970). Time series analysis, Forecasting and control, Holden-

Day, San Francisco, CA. 

Brock, W.A., Dechert, W.D., Scheinkman, J.A, and lebaron, B. (1996). A test for independence 

based on the correlation dimension, Econometric reviews, 15:197-235.  
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Chitikela, G.; Admala, M.; Ramalingareddy, V.K.; Bandumula, N.; Ondrasek, G.; Sundaram, 

R.M.; Rathod, S. Artificial-Intelligence-Based Time-Series Intervention Models to 

Assess the Impact of the COVID-19 Pandemic on Tomato Supply and Prices in 

Hyderabad, India. Agronomy 2021, 11, 1878. 

Jha, G. K.  and Sinha, K. (2012) Time-delay neural networks for time series prediction: an 

application to the monthly wholesale price of oilseeds in India, Neural Computing and 

Applications, 24(3), 563-571 

Rathod, S. and Mishra, G.C. (2018). Statistical Models for Forecasting Mango and Banana 

Yield of Karnataka, India. Journal of Agricultural Science and Technology. 20(4) July 

2018.  

Rathod, S.; Saha, A.; Patil, R.; Ondrasek, G.; Gireesh, C.; Anantha, M.S.; Rao, D.V.K.N.; 

Bandumula, N.; Senguttuvel, P.; Swarnaraj, A.K.; Meera, S.N.; Waris, A.; Jeyakumar, 

P.; Parmar, B.; Muthuraman, P.; Sundaram, R.M. Two-Stage Spatiotemporal Time 

Series Modelling Approach for Rice Yield Prediction & Advanced Agroecosystem 

Management. Agronomy 2021, 11, 2502. https://doi.org/10.3390/agronomy11122502 

Vapnik, V., Golowich, S., and Smola, A. (1997). Support vector method for function 

approximation, regression estimation, and signal processing, In Mozer, M., Jordan, M 

and Petsche, T. (Eds) Advances in Neural Information Processing Systems, 9:281-287, 

Cambridge, MA, MIT Press. 

Zhang, G.P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. 

Neurocomputing, 50, 159-175. 
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Introduction 

Support vector machine (SVM) was originally developed for classification problems 

by Cortes and Vapnik (1995) for binary classification. A classification task usually involves 

separating data into training and testing sets. Each instance in the training set contains one 

“target value” (i.e. the class labels) and several “attributes” (i.e. the features or observed 

variables). The goal of SVM is to produce a model (based on the training data) which predicts 

the target values of the test data given only the test data attributes. 

Support vector machine (SVM) is supervised machine learning technique, which was 

originally developed for linear classification problems. Later in the year 1997, the support 

vector machine for regression problems were developed by Vapnik by introducing ε-insensitive 

loss function and it has been extended to the nonlinear regression estimation problems and 

modeling of such problems is called as Nonlinear Support Vector Regression (NLSVR) model. 

The basic principle involved in NLSVR is to transform the original input time series into a high 

dimensional feature space and then build the regression model in a new feature space. The 

support vector regression, particularly the nonlinear support vector regression has been widely 

used in time series prediction in many areas viz., agriculture, industry, stock market price 

prediction etc., (Hong et al. 2006, Cong et al. 2016, Kumar and Prajneshu, 2015).  

 

Support Vector Regression: 

Consider a vector of data set  𝑍 = {𝑥𝑖 𝑦𝑖}𝑖=1
𝑁  where 𝑥𝑖 ∈ 𝑅

𝑛 which contains both vector 

of input and 𝑥𝑖 ∈ 𝑅 is the scalar output and N is the size of data set. The general expression of 

NLSVR estimation function is expressed as follows 

            𝑓(𝑥) = 𝑊𝑇𝜙 (𝑥) + 𝑏                                                                   (1) 

where 𝜙(.): 𝑅𝑛→ 𝑅𝑛ℎ is a nonlinear mapping function from original input space into a higher 

dimensional feature space, which can be infinite dimensional, 𝑤∈𝑅𝑛ℎ is weight vector, 𝑏 is 

bias term and superscript T denotes the transpose.  The coefficients W and 𝑏 are estimated from 

data by minimizing the following regularized risk function: 
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        𝑅(𝜃) =
1

2
‖𝑤‖2 + 𝐶 [

1

𝑁
∑ 𝐿𝜀
𝑁
𝑖=1 (𝑦𝑖, 𝑓(𝑥𝑖))]                              (2) 

The equation (2) contains two components, one is regularized term i.e. 
1

2
‖𝑤‖2 and another 

term is 
1

𝑁
∑ 𝐿𝜀
𝑁
𝑖=1 (𝑦𝑖, 𝑓(𝑥𝑖)) called as empirical error term, which is estimated by using 

Vapnik 𝜀-insensitive loss function which is function given by 

 

           𝐿𝜀(𝑦𝑖 , 𝑓(𝑥𝑖)) = 𝑓(𝑥) = {
|𝑦𝑖 , 𝑓(𝑥𝑖) − 𝜀|;  |𝑦𝑖 − 𝑓(𝑥𝑖)| ≥ 𝜀,

0                              |𝑦𝑖 − 𝑓(𝑥𝑖)| < 𝜀,
      (3)                  

 

where 𝑦𝑖 is actual value and 𝑓(𝑥𝑖)  is estimated value. In Equation (14), 𝐶 is denoted as 

regularized constant which determines the trade-off between empirical error and regularized 

parameter. Both 𝐶 and 𝜀 are user-determined hyper-parameters.  The final form of Nonlinear 

SVR function is: 

           𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏,

𝑁
𝑖=1 𝑖 = 1,2, … ,𝑁                     (4) 

 

where 𝛼𝑖 and 𝛼𝑖
∗ are called Lagrange multipliers.   

Selection of optimal hyper-parameters is a key step in NLSVR modelling. The 

performance of NLSVR model is strongly depends on the kernel function (Table 1) and set of 

hyper-parameters. The value 𝜀 is called as tube size equivalent to approximation accuracy in 

training data (Fig.1). Both 𝐶 and 𝜀 are user determined hyper-parameters. The training points 

within the 𝜀-tube have no loss and do not provide any information for decision. Only those data 

points located on or outside the 𝜀-tube are penalized and will serve as the support vectors. This 

property of sparseness algorithm results only from the 𝜀-insensitive loss function and greatly 

simplifies computation of Nonlinear SVR. Two positive slack variables 𝜉𝑖 and 𝜉 𝑖
∗  (in interval) 

are introduced for representing the distance from actual values to corresponding boundary 

values of the 𝜀-tube. These equal zeros when data points fall within the tube.  These slack 

variables are used for determining the number of support vectors.  

The most commonly used kernel function is radial basis function (RBF) which is given 

as follows.  

  𝑘(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝{−𝛾‖𝑥 − 𝑥𝑖‖
2)                                                  (5) 
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Fig.1: A schematic representation of Vapnik𝜀-insensitive loss function and accuracy 

tube under Nonlinear SVR model setup 

The RBF kernel function in NLSVR requires optimization of two hyper-parameters, i.e. the 

regularization parameter C, which balances the complexity and approximation accuracy of the 

model and the kernel bandwidth parameter 𝛾,  which defines the variance of RBF kernel 

function (Vapnik 2000).  

 

Table 1: Commonly used Kernel functions in Support Vector Machine problems 

 

Kernel type Expression 

Linear SVM 𝐾(𝑥, 𝑥𝑖) = 𝑥𝑖
𝑇𝑥 

Polynomial of degree d 𝐾(𝑥, 𝑥𝑖) = (𝑥𝑖
𝑇𝑥 + 𝑘)𝑑 

Radial Basis Function (RBF) 𝐾(𝑥, 𝑥𝑖) = exp {−
‖𝑥−𝑥𝑖‖

2

2𝜎2
}  Equivalently 

𝐾(𝑥, 𝑥𝑖) = exp{−𝛾‖𝑥 − 𝑥𝑖‖
2} 

Multi-Layer Perceptron (MLP) 𝐾(𝑥, 𝑥𝑖) = tanh (𝑘1𝑥𝑖
𝑇𝑥 + 𝑘2 
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The support vector machine train the data set based on certain learning rules. Actually, 

the challenges in learning from data have led to a revolution. In the statistical learning 

framework, learning means estimating a function 

 𝑦 = 𝑓(𝑥)                                                             (7) 

Where𝑥𝜖𝑅𝑛and 𝑦 ∈ {−1,+1}. The estimate must be constructed given only N 

examples of the mapping performed by the unknown function (𝑥1𝑦1, 𝑥2𝑦2, … , 𝑥𝑁 , 𝑦𝑁)(called 

the training set). The ultimate goal of learning rule is to minimize the error function or risk 

function  

 𝑅(𝜃 )  = ∫ 𝐿(𝑦, 𝑓(𝑥; 𝜃 ))𝑑𝐹(𝑥, 𝑦)                    (8) 

where∫ 𝐿(𝑦, 𝑓(𝑥 )) is the loss function, a measure of difference between the estimate 

𝑓(𝑥 ) and the actual value 𝑦 given by the unknown function at a point x. By defining our goal 

as minimizing the risk function, we state that our objective is to minimize the expected average 

loss for a given problem. For this definition to be of value, we need to define learning problems 

with associated loss functions. In minimizing the risk function, we have to choose the function 

that provides minimum deviation (in the sense of our loss function) from the true function 

across the whole function space (for every point𝑥). In reality, however, the joint distribution 

function 𝐹(𝑥, 𝑦) is unknown, and we do not have value of 𝑦 for each point 𝑥 in the function 

space, but only the training set pairs {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁 . We can insert approximate function in risk 

function by considering the empirical risk function:  

 𝑅𝑒𝑚𝑝(𝜃 ) = ∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖, 𝜃 )
𝑁
𝑖=1                           (9)  

 

The ERM principle, which minimizes the empirical risk but sometimes it gives larger 

confidence interval. This induction principle is called Empirical Risk Minimization principle; 

the popular neural network back propagation algorithm works on this principle. To overcome 

these difficulties, the structural risk minimization principles has been used to minimize the 

error function. The principle of Structural Risk Minimization (SRM) is intended to minimize 

the risk functional with respect to both empirical risk and dimension of the set of functions. 

Objective of SRM principle is to minimize both the empirical risk and the confidence interval 

(the two terms in the bound). Thus the SRM principle defines a trade-off between the accuracy 

and complexity of the approximation by minimizing over both terms. 

 

Illustration: 
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Annual data on the total oilseed production (in million tonnes) in India for the period 1950–51 

to 2015–16 were obtained from the agricultural statistics published by the Reserve Bank of 

India (RBI), Government of India (RBI Statistics, 2016). The data set covering the years 1950–

51 to 2010–11 was utilized for model development, while the observations from 2011–12 to 

2015–16 were reserved for model validation purposes. A summary of the descriptive statistics, 

along with the corresponding time series plot for the data under study, is presented in Table 2 

and Figure 2, respectively. 

 

 

Fig.2: Time series plot of Oilseed production of India 

 

 

 

The Nonlinear Support Vector Regression (NLSVR) model for oilseed production time series 

was developed using the parameter settings outlined in Table 2. Cross-validation was 

performed on the time series data, yielding a minimum cross-validation error of 0.035. The 

model's performance on both the training and testing datasets is presented in Tables 5 and 6, 

respectively. 
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Table 3: Model specification of SVR for Oilseed Production time series 

 

Kernel 

function 

No. of SVs C 𝜸 𝜺 K fold cross 

validation (K) 

Cross Validation 

Error 

RBF 7 8.19 3.06 0.15 10 0.035 

 

Univariate ARIMA Model Fitting 

The ARIMA model has been built for oilseed production of India. The original time 

series was found to be non-stationary, so first differencing was done to make the stationary 

series time series (Figure 3).  

  

Fig. 3.  ACF and PACF time series Oilseed production of India 

 

The appropriate model, ARIMA(1,1,0), was selected based on the analysis of the 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots (Figure 3). 

A residual autocorrelation check for the ARIMA model applied to the mango production time 

series revealed that the residuals are non-autocorrelated, with a chi-square probability value of 

0.45. The model’s performance on the training and testing datasets is summarized in Tables 5 

and 6, respectively.  
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Based on the lowest values of Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and Mean Absolute Percentage Error (MAPE) across all models for both the training 

dataset (Table 3) and the testing (validation) dataset (Table 4), it can be concluded that the 

Nonlinear Support Vector Regression (NLSVR) technique outperformed the ARIMA model. 

Despite the high coefficient of variation observed in the dataset (Table 1), the artificial 

intelligence-based approach, specifically NLSVR, demonstrated superior performance. This 

may be attributed to the ability of nonlinear machine learning techniques to effectively capture 

heterogeneous patterns in the data, offering an advantage over the univariate ARIMA model. 

 

Conclusion:  
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ARIMA models are not always suitable for time series data that exhibit nonlinear 

structures. In such cases, nonlinear artificial learning techniques like Support Vector Machines 

(SVM) can provide a more effective means to enhance forecasting performance. Based on the 

findings of this study, it can be inferred that the use of Nonlinear Support Vector Regression 

(NLSVR) techniques for modeling and forecasting time series data significantly improves 

forecasting accuracy. The NLSVR model demonstrated superior performance in forecasting 

oilseed production in India when compared to other models. This approach may be further 

extended by incorporating additional machine learning techniques that account for varying 

autoregressive and moving average orders. 

R codes 

nrow(available.packages()) 

rm(list=ls()) 

library(forecast) 

library(e1071) 

library(tseries) 

library(ggplot2) 

library(tidyverse) 

library(fNonlinear) 

library(lmtest) 

g=read.table(file="rf.txt",header=T) 

head(g) 

dim(g) 

Box.test(g$Rainfall) 

rf1=read.table(file="rf1.txt",header=T) 

head(rf1) 

ggplot(data = rf1, aes(x = Month, y = Rainfall) )+ geom_line(color = "#00AFBB", size = 1) + 

 labs(x = "Months", y = "Rainfall") + ggtitle("TS Plot of Monthly Rainfall Data") 

bdsTest(g$Rainfall, m = 3, eps = NULL, title = NULL, description = NULL) 

dim(g) 

a1=g$Rainfall[1:1416] 

a2=g$Rainfall[1417:1428] 

 

X1=g$Rainfall[1:1416] 

Y1=g$Rainfall[2:1417] 

X2=g$Rainfall[1416:1427]  

Y2=g$Rainfall[1417:1428]  

m4=svm(X1,Y1,degree = 3,cost = 45.69, nu=0.5,tolerance = 0.00001,epsilon = 0.00001) 

summary(m4) 

fitted4 <- fitted(m4)   ## Fitted values   

mse41=abs(Y1-fitted4)^2 

mse4=mean(mse41) 

rmse4=sqrt(mse4) 

rmse4 
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Box.test(m4$residuals) 

s3=predict(model,X2) 

mse61=abs(Y2-s3)^2 

mse6=mean(mse61) 

rmse6=sqrt(mse6) 

 

Suggested Readings 

Cong, Y., Wang J. and Li X. (2016). Traffic Flow Forecasting by a Least Squares Support 
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59-68. 

Cortes, C. and Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 1-25. 

Hong, W.C. and Pai, P.F. (2006). Predicting engine reliability by support vector machines. 

International Journal of Advanced Manufacturing Technology, 28: 154-161. 

Kumar, T.L.M. and Prajneshu.  (2015). Development of Hybrid Models for Forecasting Time-

Series Data Using Nonlinear SVR Enhanced by PSO. Journal of Statistical Theory and 

Practice, 9(4): 699-711.  

Naveena, K., Rathod, S., Shukla, G. and Yogish, K.J.  2014. Forecasting of coconut production 

in India: A suitable time series model, International Journal of Agricultural 

Engineering, 7(1):190-193. 

Naveena, K., Singh, S., Rathod, S., and Singh, A. 2017. Hybrid ARIMA-ANN Modelling for 

Forecasting the Price of Robusta Coffee in India.  International Journal of Current 

Microbiology and Applied Sciences, 6(7): 1721-1726.  

Naveena, K., Singh, S., Rathod, S., and Singh, A. 2017. Hybrid Time Series Modelling for 

Forecasting the Price of Washed Coffee (Arabica Plantation Coffee) in India. 

International Journal of Agriculture Sciences, 9(10): 4004-4007. 
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1. Introduction 

A decision tree is a supervised machine learning model that uses a tree-like structure to make 

decisions. It is composed of nodes, which represent decision points based on input features, and 

branches, which represent the outcomes of those decisions. The final leaf nodes represent the 

predicted outcomes either a class label in classification or a numeric value in regression. 

Decision trees operate by recursively partitioning the input data based on the values of features. 

The goal of each split is to reduce impurity i.e., to create subsets that are as homogeneous as 

possible with respect to the target variable. 

Tree-based classification and regression techniques have gained significant popularity in recent 

years. These decision-tree methods are statistical tools used to explore data and make 

predictions or classifications of future observations through a set of clearly defined decision 

rules. Often referred to as rule induction methods, they are valued for their transparent and 

interpretable structure. The Classification and Regression Tree (CART) methodology has 

become particularly popular across various disciplines—such as agriculture, medicine, forestry, 

and natural resource management—as an effective alternative to traditional methods like 

discriminant analysis, multiple linear regression, and logistic regression. 

In CART, observations are recursively partitioned into two subgroups based on predictor 

variables that show strong association with the response variable. This process yields intuitive 

and easily interpretable decision rules. CART models can be applied either as classification 

trees when the response variable is categorical, or as regression trees when it is continuous. One 

of the major strengths of tree-based approaches is their flexibility; they do not rely on strict 

assumptions such as normality or linearity. These methods are non-parametric, robust to 

outliers, capable of handling both continuous and categorical variables, and can efficiently 

process datasets with large numbers of cases and variables—although they are computationally 

more intensive. 
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Unlike traditional techniques such as ordinary least squares (OLS) regression or discriminant 

analysis, tree-based models do not require the user to specify the underlying functional form or 

distributional assumptions. Moreover, in contrast to other non-parametric approaches like 

kernel methods or k-nearest neighbors, tree-based predictors tend to yield relatively simple and 

interpretable functions of the input variables, making them especially practical. The origins of 

tree-based methods trace back to the 1960s, with the introduction of AID (Automatic Interaction 

Detector) by Morgan and Sonquist (1963), initially developed for regression tree analysis. AID 

works through a stepwise splitting process, beginning with a single group of observations and 

evaluating each predictor variable by sorting the data and examining all possible n−1 binary 

splits. The best split is selected by minimizing the within-group sum of squares about the group 

mean of the dependent variable. Categorical predictors, which lack a natural order, are handled 

differently: for k categories, 2(k-1)-1 possible splits are considered, and their effectiveness is also 

evaluated using the within-cluster sum of squares criterion.This methodology was later 

extended through the development of THAID (Theta AID) by Morgan and Messenger (1973) 

to generate classification trees. A key feature emphasized by Morgan and Sonquist is that AID 

naturally captures interaction effects among predictors. Unlike traditional ANOVA models, 

where interactions are explicitly specified using cross-product terms, tree-based models capture 

interactions structurally—manifested as divergent branches from the same node based on 

different variables. This makes decision tree algorithms like AID highly automatic and well-

suited to modeling complex real-world data, where interactions are often inherent and prevalent. 

Classification trees operate similarly to regression trees but are used when the dependent 

variable is categorical. Kass (1980) introduced the CHAID (Chi-squared AID) algorithm as a 

modification of AID for use with categorized variables. CHAID follows a sequential merge-

and-split process based on chi-square statistics. For each predictor: 

1. A cross-tabulation is created between the predictor categories and the outcome classes. 

2. Pairs of categories with the least significant differences (smallest chi-square) are merged. 

3. This merging continues until no further insignificant differences remain. 

4. The predictor with the largest overall chi-square value is selected for splitting. 

Although CHAID is a computationally efficient heuristic, it does not guarantee the best 

predictive split at each step, unlike exhaustive search methods. CHAID is limited to categorical 

predictors and cannot accommodate mixed data types. In parallel, within computer science, 

Quinlan (1986, 1993) developed a family of algorithms such as ID3 and its successors based 
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on information theory. These methods build decision trees by selecting splits that maximize 

information gain and have been widely adopted in data mining and machine learning 

applications. Minz and Jain (2003) have employed Rough Set (RS) theory-based decision tree 

model for classification on the premise that in real life while dealing with sets, due to limited 

resolution of our perception mechanism, we can distinguish only classes of elements rather than 

individuals. Elements within classes are indistinguishable. RS offers a simplified search for 

dominant attributes.  

Breiman et al. (1984) developed CART (Classification and Regression Trees) which is a 

sophisticated program for fitting trees to data. Breiman, later in 1994, developed the bagging 

predictors which is a method of generating multiple versions of a predictor and using them to 

get an aggregated predictor.  A good account of the CART methodology can be found in many 

recent books, say, Izenman (2008). An application of classification trees in the field of 

agriculture can be found in Sadhu et al. (2014). 

2. Broad Outline of CART methodology 

The conventional CART methodology is outlined briefly. Following is a schematic 

representation of a conventional CART tree structure: 
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In a classification tree, the unique starting point is known as the root node, which contains the 

entire learning dataset 𝐿 and appears at the top of the tree structure. Each node in the tree 

represents a subset of variables and may either be a non-terminal (parent) or a terminal (leaf) 

node. A parent node undergoes a binary split, dividing it into two child nodes—left and right—

based on a decision rule applied to a single predictor variable. If an observation satisfies the 

condition, it is directed to one child node; otherwise, it proceeds to the other. A node that is not 

further split becomes a terminal node and is assigned a class label. Every observation from the 

learning set ultimately falls into one of these terminal nodes, and an unseen observation is 

classified according to the label of the terminal node it reaches. To build such tree-structured 

models, the CART (Classification and Regression Trees) algorithm employs recursive binary 

partitioning, which involves determining the optimal splits of dataset 𝐿 and its successive 

subsets. This process includes identifying the variable for the split, formulating the split rule, 

deciding when to terminate further splitting, and assigning class labels to terminal nodes. While 

the procedures for assigning labels and generating splits are relatively straightforward, 

determining the optimal tree size is more complex. Typically, a fully grown tree is first 

constructed, and then pruning is applied to obtain a tree of optimal size. In exhaustive search 

procedures, the algorithm evaluates all possible binary splits of each subset at every stage, 

selecting the one that maximizes node purity. This is assessed using an impurity function, which 

measures the heterogeneity of class labels within a node. Common impurity metrics include the 

Gini diversity index and entropy. The reduction in impurity resulting from a split is calculated 

by subtracting the weighted average impurity of the two child nodes from the impurity of the 

parent node. Weights are assigned based on the proportion of samples in each child node. The 

split that yields the greatest impurity reduction (or equivalently, the greatest increase in purity) 

is selected. Tree construction begins at the root node by evaluating the best split across all 

predictor variables using the impurity reduction criterion. The process is recursively repeated 

for each child node, considering only the observations contained within them. This layer-by-

layer construction is referred to as recursive partitioning. When each parent node splits into 

exactly two child nodes, the result is a binary tree. If the tree is expanded until no further splits 

are possible, it is called a saturated tree. Initially, a large, fully expanded tree is grown, often 

splitting nodes even when minimal impurity reduction is achieved. To avoid overfitting, a 

sequence of smaller subtrees is then generated via pruning, which removes certain splits to 

simplify the tree. The challenge lies in determining the right tree complexity. An overly 
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complex tree may overfit the training data and generalize poorly to new data, whereas a tree 

with too few terminal nodes may fail to capture essential patterns, reducing predictive accuracy. 

As trees become more complex, initial increases in classification accuracy are often followed 

by a deterioration in performance due to overfitting. Therefore, evaluating a tree’s 

misclassification rate for future observations is essential. One method for this is the 

resubstitution estimate, where the tree is used to classify the same data it was trained on, and 

the proportion of misclassified instances is calculated. However, a more reliable estimate is 

obtained using an independent test set, which consists of observations from the same population 

as the learning set, with known true class labels. The test set error rate is calculated as the 

proportion of misclassified test cases. Generally, one-third of the available data is reserved for 

the test set, while the remaining two-thirds are used as the learning set. Alternatively, smaller 

proportions (e.g., one-tenth) can be used in combination with k-fold cross-validation, such as 

10-fold cross-validation, to estimate generalization performance more robustly. A widely used 

approach to generating an optimal tree is minimum cost-complexity pruning, which involves 

generating a nested sequence of subtrees by systematically removing the weakest links—a 

process known as weakest-link pruning. In this method, all nodes descending from a selected 

non-terminal node are pruned, converting that node into a terminal one. The node chosen for 

pruning is the one whose removal results in the smallest per-node decrease in the resubstitution 

misclassification rate. If multiple nodes yield the same reduction, the one associated with the 

largest number of nodes removed is preferred.This process results in a set of candidate subtrees, 

from which the optimal tree is selected based on its estimated misclassification rate for future 

observations—either using a validation set or through cross-validation. This final selection 

ensures a balance between tree complexity and predictive accuracy. 

3.  CART tree growing procedure 

Let Y,X) be a multivariate random variable where X represents a vector of K explanatory 

variables, which may include both categorical and continuous types, and Y denotes the response 

variable. The response variable YYY can either be categorical, taking values from a set of 

classes C(=1,...,j,...,J) ,or continuous, taking values on the real line. When YYY is categorical, 

the model constructed is a classification tree, whereas for a continuous YYY, the model is a 

regression tree. 
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Splitting Strategy 

In determining how to divide subsets of L to create two daughter nodes from a parent node, the 

general rule is to increase the “purity” of each daughter node with respect to the response 

variable. This means minimizing the number of misclassified cases in each node. For a complete 

description of splitting rules, it is important to distinguish between continuous and categorical 

variables. 

For a continuous variable, the number of possible splits at a given node is one less than the 

number of its distinctly observed values. Suppose a categorical variable is defined by MMM 

distinct categories, l1,l2,...,lM . The set of possible splits at that node is the set of all subsets of 

l1,l2,...,lM. Denote by τL and τR the left and right daughter nodes, respectively, emerging from a 

parent node τ. In general, there will be 2M-1-1  distinct splits for an MMM-level categorical 

variable. 

Several types of splits can be considered at each step. For a numerical predictor variable xk, a 

subset of L can be divided such that one subset contains xk≤sk , and the other contains xk>sk,, 

where sks_ksk is an observed value of xk . For a categorical predictor variable xk  with class 

labels from a finite set Dk , a subset of L can be divided such that one subset contains xk ∈  Sk, 

 and the other contains xk ∉  Sk, where Sk  is a nonempty proper subset of Dk . 

At each node, the tree-growing algorithm determines the variable on which it is “best” to split. 

To do this, all possible splits across all variables at that node are evaluated. Each split is 

enumerated, assessed, and the one that maximizes a chosen criterion is selected. 

Node Impurity Function  

During recursive partitioning, all allowable splits of a subset of LLL are examined, and the split 

that results in the highest increase in node purity is selected. This is achieved using an “impurity 

function,” which quantifies the distribution of response variable classes in a node. The function 

is designed to be maximal when all classes are equally represented (i.e., the node is most 

impure), and minimal when the node is pure (i.e., all samples belong to the same class). 
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To identify the best split for each variable, a “goodness of split” criterion is used. Among all 

splits, the one that results in the greatest reduction in impurity is chosen. Two commonly used 

impurity functions are the Gini diversity index and the entropy-based information gain. 

Let, П1, П2, ... , ПK be the K≥2 classes. For node τ, the node impurity function is defined as 

𝑖(𝜏) = (𝑝(1|𝜏),… , 𝑝(𝐾|𝜏)) where  𝑝(𝑘|𝑡) is an estimate of𝑃(𝑋 ∈ Π𝑘|𝜏),  , the conditional 

probability that an observation X is in Пk given that it falls into node τ. Under this set up, the 

Entropy function is given by, 𝑖(𝜏) = −∑ 𝑝(𝑘|𝜏)𝑙𝑜𝑔𝑝(𝑘|𝜏)𝐾
𝑘=1 . When there are only two 

classes, the entropy function reduces to 𝑖(𝜏) = −𝑝𝑙𝑜𝑔𝑝 − (1 − 𝑝) log(1 − 𝑝),      where, 𝑝 =

𝑝(1|𝜏) . The other impurity function, i.e. the Gini diversity index is defined as, 𝑖(𝜏) =

∑ 𝑝(𝑘|𝜏)𝑝(𝑘′𝑘=𝑘′ |𝜏) = 1 − ∑ {𝑝(𝑘|𝜏)}2𝑘 . In the two class case, the Gini index reduces to 

𝑖(𝜏) = 2𝑝(1 − 𝑝).  

Choosing the best split for a variable:  

To evaluate the effectiveness of a potential split, the impurity function value is first calculated 

using the cases in the learning sample corresponding to the parent node. From this, the weighted 

average of the impurity values of the resulting daughter nodes is subtracted. The weights are 

proportional to the number of cases in the learning sample assigned to each daughter node. The 

result of this calculation represents the decrease in overall impurity that would result from the 

split. In the tree-growing procedure, all permissible ways of splitting a subset of L are 

considered. Among them, the split that yields the greatest reduction in node impurity or, 

equivalently, the greatest increase in node purity—is selected. This method ensures that the tree 

evolves in a manner that increasingly separates the data based on class homogeneity. The 

splitting procedure is elaborated further in the following sections.  

Suppose, at node τ, a split s is applied so that a proportion pL of the observations drops down 

to the left daughter node τL and the remaining proportion pR drops down to the right daughter 

node τR. For example, suppose there is a dataset in which the response variable Y has two 

possible values, 0 and 1. Suppose that one of the possible splits of the explanatory variables Xj 

is Xj≤ c vs. Xj>c, where c is some value of Xj. Then the 2×2 table can be prepared as  

Split 

Class of Y 

Row total 
1 0 
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Xj ≤ c n11 n12 n1+ 

Xj > c n21 n22 n2+ 

Column total n+1 n+1 n++ 

Consider, first, the parent node τ. If pL is estimated by n+1/n++ and pR by n+2/n++, and Gini’s 

index is used as the impurity measure, then the estimated impurity function is, 

𝑖(𝜏) = 2(
𝑛+1
𝑛++

)(1 −
𝑛+1
𝑛++

) = 2(
𝑛+1
𝑛++

)(
𝑛+2
𝑛++

) 

Now consider the daughter nodes, τL and τR. For Xj≤ c, pL is estimated by n11/ n1+ and pR by 

n12/ n1+, and for Xj> c, pL is estimated by n21/ n2+ and pR by n22/ n2+. Then the following two 

quantities are computed, 

𝑖(𝜏𝐿) = 2 (
𝑛11
𝑛1+

) (1 −
𝑛11
𝑛1+

) = 2 (
𝑛11
𝑛1+

) (
𝑛22
𝑛2+

) 

The goodness of a split s at node τ is given by the reduction in impurity gained by splitting the 

parent node τ into its daughter nodes, τR and τL, Δ𝑖(𝜏) = 𝑖(𝜏) − {𝑝𝐿𝑖(𝜏𝐿) + 𝑝𝑅𝑖(𝜏𝑅)}. The best 

split for the single variable Xj is the one that has the largest value of Δi(S, T)   over all ∋ 𝑆𝑗 , the 

set of all possible distinct splits for Xj. 

Recursive partitioning: To construct a decision tree, the process begins at the root node, which 

consists of the full learning dataset L. Using a predefined goodness-of-split criterion, the 

algorithm evaluates each predictor variable and identifies the optimal split at the root node as 

the one that yields the maximum reduction in impurity across all possible single-variable splits. 

Once the best split is selected and implemented at the root node, the algorithm proceeds to split 

each resulting daughter node in the same manner. For each daughter node, calculations are 

performed using only the subset of data corresponding to that node, rather than the entire 

dataset. This procedure of recursively partitioning the data into increasingly homogeneous 

subsets continues layer by layer, and is referred to as recursive partitioning. 

When every parent node gives rise to exactly two daughter nodes, the resulting structure is 

known as a binary tree. If the binary tree continues to grow until no further splits are possible—

meaning each terminal node contains data that cannot be further partitioned—the tree is said to 

be saturated. In high-dimensional classification problems, allowing the tree to grow without 
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constraints can result in a structure that becomes overwhelmingly large and difficult to interpret. 

To prevent such unmanageable growth, it is often useful to impose restrictions on the tree-

building process. One such restriction involves defining a node as terminal if it contains fewer 

than a specified minimum number of observations, denoted nmin . If the number of cases in a 

node τ satisfies n(τ) ≤ nmin , then the node is not split further. This threshold acts as a control on 

tree growth, where larger values of nmin  result in more aggressive limitations. 

Another early stopping approach involves halting the splitting process when the largest value 

of the goodness-of-split criterion at a given node falls below a pre-specified threshold. 

However, this method is not always effective. There are instances where a split may yield only 

a minor decrease in impurity at a certain stage, but can lead to significant reductions in impurity 

in subsequent splits of its descendant nodes. As a result, relying solely on such stopping rules 

can prevent the algorithm from discovering more meaningful partitions. 

A more effective alternative is to allow the tree to grow to a considerable size initially, even if 

some splits produce only modest reductions in impurity. Once a large tree has been grown, a 

pruning process can then be applied to simplify the structure. During pruning, previously made 

splits are removed, resulting in a sequence of smaller and more manageable subtrees. This post-

processing step produces trees with fewer nodes, allowing for a balance between model 

complexity and predictive accuracy. By starting with a large tree and then pruning it down, the 

model has a better chance of exploring informative partitions in the data before settling on a 

simpler and more generalizable structure. This grow-then-prune approach is commonly 

preferred, particularly in high-dimensional settings, as it avoids premature termination of 

potentially valuable splits and facilitates the construction of more effective classification 

models.This aspect of “pruning” will be discussed in the later sections. Thereafter, assignment 

of a class with a terminal node is done by associating a class with each of the terminal node by 

the rule of majority. Suppose at terminal node τ there are n(τ) observations, of which nk(τ) are 

from class ПK, k=1, 2, …, K. Then, the class which corresponds to the largest of the {nk(τ)} is 

assigned to τ. This is called the plurality rule i.e. the node τ is assigned to class Пi if 𝑝(𝑖|𝜏) =

𝑚𝑎𝑥𝑖𝑝(𝑘|𝜏)  . 

Estimating the misclassification rate and pruning procedure: The crucial aspect of constructing 

a reliable tree-structured classification model lies in determining the appropriate complexity of 

the tree. If nodes are continuously split until no two distinct values of X from the learning 
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sample share the same node, the model may overfit the training data, resulting in poor 

classification performance on future observations. Conversely, a tree with too few terminal 

nodes may underutilize the available information in the learning sample, thereby compromising 

its classification accuracy. Typically, during the tree-growing process, predictive accuracy 

improves as the partition becomes more refined with additional nodes. However, beyond a 

certain point, increasing complexity leads to deterioration in the model's ability to generalize, 

as evidenced by a rise in the misclassification rate for unseen data.To compare the predictive 

performance of different tree-structured models, it is essential to estimate each tree’s 

misclassification rate on future observations, commonly referred to as the generalization error. 

Another important metric is the resubstitution estimate of the misclassification rate. This is 

calculated by applying the tree to classify the same cases from the learning sample used in its 

construction, and then computing the proportion of misclassified cases. 

The resubstitution estimate of the misclassification rate R(τ) of an observation at node τ is 

calculated as follows: 𝑟(𝜏) = 1 −𝑚𝑎𝑥𝑘𝑝(𝑘|𝜏)  which, for the two class case, reduces to 

𝑟(𝜏) = 1 −max(𝑝, 1 − 𝑝) = min (𝑝, 1 − 𝑝). 

However, it does not work well to use the resubstitution estimate of the misclassification rate. 

Because, if no two members of the learning sample have the same value of X, then a tree having 

a resubstitution misclassification rate of zero can be obtained by continuing to make splits until 

each case in the learning sample is by itself in a terminal node. This may be due to the condition 

that the class associated with a terminal node will be that of the learning sample case 

corresponding to the node, and when the learning sample is then classified using the tree, each 

case in the learning sample will drop down to the terminal node that it created in the tree-

growing process, and will have its class match the predicted class for the node. Thus the 

resubstitution estimate can be a very poor estimate of the tree’s misclassification rate for the 

future observations, since it can decrease as more nodes are created, even if the selection of 

splits is just responding to “noise” in the data, and not to the real structure. This phenomenon 

is similar to R2 increasing as more terms are added to a multiple regression model, with the 

possibility of R2 nearing one if enough terms are added, even though more complex regression 

models can be much worse predictors than simpler ones involving fewer variables and terms. 

Let T be the classification tree and let 𝑇 ̃ = {𝑇1, 𝑇2, … , 𝜏𝐿}  denote the set of all terminal nodes 

of T. The misclassification rate for T can now be estimated by 𝑅(𝑇) = ∑ 𝑅(𝑇)𝑃(𝜏) =𝑇=�̃�
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∑ 𝑅(𝑇𝑙
𝐿
𝑙=1 )𝑝(𝜏𝑙) for T, where P(τ) is the probability that an observation falls into node τ. If P(τl) 

is estimated by the proportion p(τl) of all observations that fall into node τl, then, the 

resubstitution estimate of R(T) is 𝑅𝑟𝑒(𝑇) = ∑ 𝑟(𝜏1)𝑝(𝜏1) = ∑ 𝑅𝑟𝑒𝐿
𝑙=1

𝐿
𝑙=1 (𝜏1)  where, 

𝑅𝑟𝑒(𝑇𝑙) = 𝑟(𝑇𝑙)𝑝(𝑇𝑙). 

A more reliable estimate of a decision tree’s misclassification rate can be obtained through the 

use of an independent test set, which consists of observations drawn from the same underlying 

population or distribution as the training (learning) set. Similar to the learning set, each 

observation in the test set possesses known values of the predictor variables along with the true 

class labels. The misclassification rate estimated from the test set is defined as the proportion 

of test set observations incorrectly classified when their predicted classes are determined using 

the tree developed from the learning set. Typically, it is recommended that approximately one-

third of the total observations be reserved as a test set, while the remaining two-thirds are used 

for training. However, in some instances, a smaller proportion, such as one-tenth, may also be 

considered adequate for the test set. 

Regardless of the approach adopted to estimate the misclassification rate, the central challenge 

remains: how to construct the most accurate classification tree, or more specifically, how to 

generate a set of candidate trees from which the best-performing one can be selected based on 

its estimated misclassification rate. As noted earlier, implementing a stopping rule to determine 

the optimal tree size tends to be ineffective. Instead, it is generally advisable to first grow a 

fully expanded tree and then apply a pruning procedure, wherein certain nodes are 

systematically removed to obtain simpler subtrees. This pruning process yields a finite sequence 

of nested subtrees, where each subsequent tree is a proper subtree of the previous one. The 

classification accuracy of each subtree in this sequence is evaluated using reliable estimates of 

misclassification rate, derived either from a test sample or through cross-validation techniques. 

Ultimately, the subtree with the best performance is selected as the final classification model. 

Pruning procedure: An effective method for generating a meaningful sequence of trees of 

varying sizes is the application of minimum cost-complexity pruning. This technique involves 

creating a nested series of subtrees from the original, fully grown tree through a process known 

as weakest-link cutting. In this procedure, all descendant nodes stemming from a particular 

nonterminal node are removed—effectively converting that node into a terminal one. The node 

selected for pruning is the one whose removal yields the smallest decrease in the resubstitution 
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misclassification rate per pruned node. When multiple pruning options result in identical per-

node decreases in the resubstitution error, the preference is given to the option that eliminates 

the largest number of nodes. This ensures a more substantial simplification of the tree while 

maintaining comparable predictive performance. In cases of minimal pruning, only two 

daughter terminal nodes are pruned from a single parent node, turning it into a terminal node. 

However, in other situations, a more extensive set of descendant nodes may be pruned 

simultaneously from a deeper internal node within the tree structure. 

Instead of using the resubstitution measure Rre(τ) as the estimate of R(T), it is modified for tree 

pruning. Let α ≥ 0 be a complexity parameter. For any node τЄT, the cost-complexity measure 

Rα(τ) is given by 𝑅𝛼(𝑇) = 𝑅𝑟𝑒(𝑇) + 𝛼. A cost-complexity pruning measure for a tree T is 

defined as 𝑅𝛼(𝑇) = ∑ 𝑅𝛼(𝑇1) = 𝑅
𝑟𝑒𝐿

𝑙=1 (𝑇) + 𝛼|𝑇|̃, where, |�̃�| = 𝐿  is the number of terminal 

nodes in the subtree T, which is a measure of tree complexity, and α is the contribution to the 

measure for each terminal node. One can think of𝛼|�̃�|  as a penalty term for tree size, so that 

Rα(T) penalizes Rre(T) for generating too large a tree. For each α, the subtree T(α) of Tmax that 

minimizes Rα(T), is selected. To minimize this measure, for small values of α, trees having a 

large number of nodes, and a low resubstitution estimate of misclassification rate, will be 

preferred. Thus, the value of α determines the size of the tree. When α is very small, the penalty 

term will be small, and so the size of the minimizing subtree T(α), which will essentially be 

determined by Rre(T(α)), will be large. For large enough values of α, a one node tree will 

minimize the measure. For example, suppose α is set to zero, i.e. α=0 and the tree Tmax is grown 

so large that each terminal node contains only a single observation; then, each terminal node 

takes on the class of its solitary observation, every observation is classified correctly, and 

Rre(Tmax)=0. So, Tmax minimizes R0(T). As the value of α is increased, the minimizing subtree 

T(α) will have fewer and fewer terminal nodes. When α is very large, it results in a tree having 

only the root node. 

Since the resubstitution estimate of misclassification rate is generally overoptimistic and 

becomes unrealistically low as more nodes are added to a tree, it is expected that there is some 

value of α that properly penalizes the overfitting of a tree which is too complex, so that the tree 

which minimizes Rα(T), for the proper value of α, will be a tree of about the right complexity 

(to minimize the misclassification rate of the future observations). Even though the proper value 

of α is unknown, utilization of the weakest-link cutting procedure explained earlier guarantees 
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that for each value of α(≥0), a subtree of the original tree that minimizes Rα(T) will be a member 

of the finite nested sequence of subtrees produced. 

It is worth noting that although α is defined on the interval [0,∞), the number of subtrees of T 

is finite. Suppose that, for α=α1, the minimizing subtree is T1=T(α1). As the value of α is 

increased, T1 continues to be the minimizing subtree until a certain point, say, α=α2, is reached, 

and a new subtree, T2=T(α2), becomes the minimizing subtree. As α is increased further, the 

subtree T2 continues to be the minimizing subtree until a value of α is reached, α=α3, say, when 

a new subtree T3=T(α3) becomes the minimizing subtree. This argument is repeated a finite 

number of times to produce a sequence of minimizing subtrees T1,T2,T3, …. The aforesaid 

discussion states that a finite increasing sequence of complexity parameters, 

0 = 𝛼0 < 𝛼1 < 𝛼2 < 𝛼3 < ⋯ < 𝛼𝑀 corresponds to a finite sequence of nested subtrees, say, 

M in number, of the fully grown tree,𝑇𝑚𝑎𝑥 = 𝑇0 > 𝑇1 > 𝑇2 > ⋯ > 𝑇𝑀. 

 

Selecting the right sized tree among the candidate sub-trees: The sequence of subtrees produced 

by the pruning procedure serves as the set of candidate subtrees for the model, and to obtain the 

classification tree, all that remains to be done is to select the one which will hopefully have the 

smallest misclassification rate for future observations. The selection is based on estimated 

misclassification rates, obtained using a test set or by cross validation. Selection based on test 

set is discussed subsequently. 

 

If an independent test set is available, it is used to estimate the error rates of the various trees 

in the nested sequence of subtrees, and the tree with minimum estimated misclassification rate 

can be selected to be used as the tree-structured classification model. For this purpose, the 

observations in the learning dataset (L) are randomly assigned to two disjoint datasets, a training 

dataset (D ) and a test set (T ), where D∩T =Ф. Suppose there are nT observations in the test set 

and that they are drawn independently from the same underlying distributions as the 

observations in D. Then the tree Tmax is grown from the learning set only, and it is pruned from 

bottom up to give the sequence of subtrees 𝑇0 > 𝑇1 > 𝑇2 > ⋯ > 𝑇𝑀 , and a class is assigned to 

each terminal node. Once a sequence of subtrees has been produced, each of the nT test-set 

observations are dropped down the tree Tk. Each observation in T is then classified into one of 

the different classes. Because the true class of each observation in T is known, R(Tk) is estimated 

by Rts(Tk), which is (4) with α=0; i.e., Rts(Tk) = Rre(Tk), the resubstitution estimate computed 
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using the independent test set. When the costs of misclassification are identical for each class, 

Rts(Tk) is the proportion of all test set observations that are misclassified by Tk. These estimates 

are then used to select the best pruned subtree T* by the rule, 𝑅𝑡𝑠(𝑇∗) = 𝑚𝑖𝑛𝑘𝑅
𝑡𝑠(𝑇𝑘) and 

Rts(T*) is its estimated misclassification rate.  A popular alternative is to recognize that since 

all of the error rates are not accurately known, but only estimated, it could be that a simpler tree 

with only a slightly higher estimated error rate is really just as good as or better than the tree 

having the smallest estimated error rate. 

 

4. R code for CART based Class prediction (Classification Tree) 

# Install and load required packages 

install.packages(c("rpart", "rpart.plot", "caret", "e1071")) 

library(rpart) 

library(rpart.plot) 

library(caret) 

library(e1071) 

# Classification Tree on iris data 

# Build CART model 

set.seed(123) 

iris_tree <- rpart(Species ~ ., data = iris, method = "class") 

# Plot tree 

rpart.plot(iris_tree, type = 3, extra = 101, fallen.leaves = TRUE, main = "CART - Classification 

Tree for Iris") 

# Predict on training data 

iris_pred <- predict(iris_tree, iris, type = "class") 

# Confusion matrix 

conf_matrix <- confusionMatrix(iris_pred, iris$Species) 

print(conf_matrix) 
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The CART classification tree for the Iris dataset effectively separates the three iris species—

setosa, versicolor, and virginica—using two key variables: Petal.Length and Petal.Width. The 

first split occurs at Petal.Length < 2.5, which perfectly isolates all 50 setosa flowers, 

demonstrating that this species has distinctly short petals. For flowers with Petal.Length ≥ 2.5, 

a second split at Petal.Width < 1.8 distinguishes between versicolor and virginica. Flowers with 

narrower petals (Petal.Width < 1.8) are mostly versicolor (49 correct, 5 misclassified), while 

those with wider petals (≥ 1.8) are mostly virginica (45 correct, 1 misclassified). This simple, 

interpretable tree highlights the strong predictive power of petal dimensions in distinguishing 

iris species and offers an easily explainable classification model with high accuracy. 

 

5. R code for CART based Prediction (Regression Tree) 

# Install and load required packages 

install.packages(c("rpart", "rpart.plot", "caret", "e1071")) 

library(rpart) 

library(rpart.plot) 

library(caret) 

library(e1071) 

# Regression Tree on mtcars 

# Build CART model 

set.seed(123) 
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car_tree <- rpart(mpg ~ ., data = mtcars, method = "anova") 

# Plot tree 

rpart.plot(car_tree, type = 3, extra = 101, fallen.leaves = TRUE, main = "CART - Regression 

Tree for mtcars") 

# Predict on training data 

car_pred <- predict(car_tree, mtcars) 

# Calculate RMSE 

rmse <- sqrt(mean((car_pred - mtcars$mpg)^2)) 

cat("\nRMSE for Regression Tree on mtcars dataset:", round(rmse, 3), "\n") 

 

The CART regression tree for the mtcars dataset predicts the car's mileage (mpg) using two key 

variables: the number of cylinders (cyl) and horsepower (hp). The tree first splits the data based 

on whether a car has 5 or more cylinders. Cars with fewer than 5 cylinders (typically 4-cylinder 

vehicles) form a group with the highest average mileage of 27 mpg, indicating better fuel 

efficiency. Among cars with 5 or more cylinders, those with horsepower under 193 have a 

moderate average mileage of 18 mpg, while those with 193 or more horsepower have the lowest 

mileage of 13 mpg, reflecting the inefficiency of powerful engines in larger vehicles. The model 

clearly demonstrates that fewer cylinders and lower horsepower lead to better fuel economy in 

cars. 
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Introduction 

Time series forecasting involves the prediction of future values based on historical observations 

and plays a critical role in various domains such as finance, energy, agriculture, weather 

prediction, and supply chain management. With increasing uncertainty, globalization, and data 

availability, the need for accurate and efficient forecasting models has become more significant 

than ever. Effective time series forecasting assists decision-makers in planning, resource 

allocation, risk mitigation, and responding dynamically to real-time trends and anomalies. 

However, time series forecasting is inherently complex due to its nonlinear, dynamic, and often 

noisy nature, especially when affected by external factors such as market fluctuations, seasonal 

effects, or environmental variability. Traditional statistical models like ARIMA, exponential 

smoothing, or Box–Jenkins methodologies often struggle to capture such nonlinear patterns 

effectively, particularly in the presence of large, high-frequency, or multivariate datasets. 

Recently, artificial neural networks (ANNs) have shown great promise in modeling and 

forecasting time series data owing to their capacity for nonlinear mapping and adaptability. 

Among them, extreme learning machine (ELM), a relatively novel learning algorithm for 

single-hidden-layer feedforward neural networks (SLFN), has gained increasing attention due 

to its fast learning speed and excellent generalization performance. Unlike conventional 

backpropagation-based ANNs, ELM randomly assigns the input weights and biases and 

analytically computes the output weights using the Moore–Penrose generalized inverse, 

eliminating issues like local minima, overfitting, and long training times. Numerous studies 

have demonstrated that ELM outperforms conventional gradient-based learning algorithms in 

terms of speed and accuracy in time series applications ranging from energy load prediction to 

stock market analysis. Its structural simplicity and non-iterative training approach make it 

highly suitable for real-time forecasting tasks and large-scale data environments. However, due 

to the randomness in the assignment of input weights and hidden biases, ELM’s forecasting 

performance can vary across runs. To mitigate this issue, ensemble or integrated ELM 

frameworks have been proposed, where the final forecast is obtained by aggregating the outputs 

of multiple ELM models, leading to improved robustness and accuracy. 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 193 - 
 

Moreover, preprocessing steps such as normalization are typically applied to scale the data 

within a defined range, which not only facilitates faster training but also prevents saturation of 

activation functions. A subsequent denormalization step is essential to restore the predicted 

values to their original scale. 

2. Extreme learning machine (ELM) 

ELM is a powerful learning technique for single-hidden-layer feedforward neural networks 

(SLFNs) known for its fast learning speed and strong generalization capability. ELM is an 

efficient neural network-based model which is similar in architecture to a feedforward neural 

network (FFNN). However, unlike FFNN, the learning algorithm of this methodology does not 

require the tuning of every parameter of its network (weights and biases). In both conventional 

FFNN and ELM, the hidden nodes are initialized randomly, but the gradient descent and 

backpropagation algorithm of FFNN keep updating their parameters till the loss function is 

minimized. However, in the ELM, the random values of hidden layer units stay constant 

throughout the whole training process. The novelty in the learning algorithm of ELM is that 

the parameters or weights that connect the hidden layer to the output layer are determined by 

Moore–Penrose generalized inverse technique, which ultimately makes the algorithm time-

efficient (Qu et al., 2016). The time series data, which may include historical records of a 

variable of interest (e.g., stock prices, energy consumption, crop yield, etc.), is first 

preprocessed to extract meaningful input–output pairs. Typically, a sliding window approach 

is employed to transform the univariate or multivariate time series into a supervised learning 

format. That is, previous lagged values of the series (and possibly exogenous variables) are 

used as inputs, while the target variable at the next time step is considered the output. After 

feature construction, the dataset is split into three subsets: training, testing, and forecasting (or 

validation). Prior to training, both training and testing datasets are normalized to a defined 

range (e.g., [0, 1] or [−1, 1]) to ensure stable and efficient learning and to prevent neuron 

saturation. The ELM model is then trained using the training set, wherein the input weights and 

biases are randomly assigned, and the output weights are computed analytically using the 

Moore Penrose generalized inverse. 

Once the ELM is trained, it is used to forecast future values by directly applying the learned 

model on the forecasting dataset. After predictions are generated, an unnormalization step is 

carried out to convert the outputs back to their original scale for evaluation and interpretation. 
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The advantage of ELM lies in its simplicity, high computational efficiency, and ability to 

handle nonlinear and nonstationary patterns often present in time series data. 

The whole procedure is described as follows: 

Suppose a time series converted into supervised learning format as a collection of 𝑆 samples, 

{𝒚𝑖, 𝑡𝑖}; 𝑖 = 1,… , 𝑆 where 𝒚𝒊 = 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑝 represents input patterns and 𝑡𝒊 is the output for 

𝑖𝑡ℎ sample. If the model is to be made using 𝑝 input nodes and 𝑞 hidden nodes, then the final 

output through a single output node can be represented by  

 𝑡𝑖 = ∑ 𝜕𝑚𝜓(𝒘𝑚. 𝒚𝑖 + 𝑏𝑚)

𝑞

𝑚=1

 (1) 

where, 𝒘𝑚 = [𝑤𝑚1, 𝑤𝑚2, … , 𝑤𝑚𝑝]
′  is the synaptic weight between jth input neuron ; 𝑗 =

1, … , 𝑝  and mth hidden neuron ; 𝑚 = 1,… , 𝑞 , 𝜕𝑚  is the output weight between mth hidden 

neuron and the output neuron, mb  is the bias and 𝜓(. ) is the activation function of the hidden 

nodes.  

As discussed earlier, the Extreme Learning Machine (ELM) differs from traditional single-

hidden-layer feedforward neural networks (SLFNs) in its training mechanism. In ELM, the 

input weights and hidden layer biases are randomly generated and remain fixed throughout the 

training process. This eliminates the need for iterative tuning or gradient-based optimization, 

which is often required in conventional neural networks. The only parameters that need to be 

determined are the output weights, which connect the hidden layer to the output layer. The 

evaluation of these output weights is equivalent to solving a linear system of the form denoted 

in matrix notation as 𝐇𝛛 = 𝐓 where 

 𝐇 =

[
 
 
 
 
𝜓(𝒘1. 𝒚1 + 𝑏1) . . . 𝜓(𝒘𝑚. 𝒚1 + 𝑏𝑚)

.

.

.

. . .

. . .

. . .

.

.

.
𝜓(𝒘1. 𝒚𝑆 + 𝑏1) . . . 𝜓(𝒘𝑚. 𝒚𝑆 + 𝑏𝑚)]

 
 
 
 

𝑺×𝒎

 (2) 

 and called the hidden layer output matrix of the ELM, 𝛛 = [𝜕1, 𝜕2, … , 𝜕𝑚]
′ and 𝐓 =

[𝑡1, 𝑡2, … , 𝑡𝑆]
′ . The parameters in 𝛛 is estimated through least squares fitting by solving 
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𝑚𝑖𝑛
𝛛

1

𝑆
‖𝐓 − 𝐇𝛛‖2  

This will give the minimum norm least square solution of output weight �̂� = 𝐇†T, where 𝐇† 

is the Moore–Penrose generalized inverse of the hidden layer output matrix H. 

3. General Algorithm for Extreme Learning Machine (ELM) 

The general algorithm for training an Extreme Learning Machine (ELM) can be described in 

the following steps: 

Step 1: Randomly assign input weights 𝒘𝑚 = [𝑤𝑚1, 𝑤𝑚2, … , 𝑤𝑚𝑝]
′  and biases mb  for each 

hidden node. 

Step 2: Compute the hidden layer output matrix 𝐇 applying the activation function 𝜓() to the 

linear combination of inputs and biases. For each input sample xjx_j, the output of the hidden 

layer is computed as 

ℎ𝐽 = [𝜓(𝒘1. 𝒚1 + 𝑏1), 𝜓(𝒘2. 𝒚2 + 𝑏2), …. 𝜓(𝒘𝑚. 𝒚1 + 𝑏𝑚)] 

Step 3: Calculate the output weights �̂� = 𝐇†T,  by solving the linear system where 𝐇† is the 

Moore–Penrose generalized inverse of the hidden layer output matrix H. 

R package for practical implications 

 elm 

library (nnfor) 

fit =elm(AirPassengers) 

print(fit) 

plot(fit) 

frc = forecast(fit,h=36) 

plot(frc) 
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1. Introduction 

The word forest in ‘Random Forest’ refers a group of decision trees and the word random 

refers to the way the results of the trained decision trees are combined. Before starting to 

discuss random forest regression (RFR), the preliminaries of building decision trees are briefly 

described and the logic for resorting to RFR is explained. 

2. Preliminaries and terminologies 

Some preliminaries and terminologies related to decision trees are given here. For some 

supplementary information, the readers are also referred to read the lecture notes on “CART 

(Classification And Regression Tree) and Decision Tree” which lecture is also a part of the 

training programme in which this lecture is also there.  

Decision trees: Decision trees are intuitive and interpretable models used for both 

classification and regression tasks. In these models, predictions are made through a series of 

hierarchical decisions based on comparisons of predictor variables with threshold values. Each 

decision leads to a branch, ultimately arriving at a leaf node that represents the predicted 

outcome. Visually, decision trees can be represented as flowcharts, making them easy to 

understand and explain. Geometrically, they work by partitioning the predictor (feature) space 

into a set of distinct, non-overlapping regions. Within each region, a prediction is made, 

typically by taking the average (in regression) or the majority class (in classification) of the 

training data points contained in that region. The core idea is to recursively divide the feature 

space into simpler sub-regions using splitting rules. These rules are derived from the data and 

are chosen to optimize a certain criterion (e.g., reducing variance or impurity). Because these 

splits can be naturally visualized as a tree structure, such models are aptly named decision 

trees. 

Root node: At the top of the tree lies the root node, which represents the entire dataset. From 

this node, the model makes its first decision or split, selecting the predictor variable and 

threshold value that most effectively reduce the variation in the target variable. 
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Internal node: Internal node, also known as a decision node, continues the process of 

partitioning the data based on specific values of the predictor variables. These nodes represent 

points where the dataset is divided further using decision rules, such as "Is variable X less 

than or equal to a certain value?". The goal at each internal node is to create child nodes that 

are more homogeneous with respect to the response variable than their parent node. 

 

Leaf node: The tree continues to grow until it reaches leaf nodes or terminal nodes, which are 

the end points of the tree. In a regression tree, each leaf node contains a predicted value, 

typically the mean of the target variable for the observations in that node. This value is used 

as the model’s prediction when a new observation falls into the corresponding region of the 

feature space. 

Splitting: The process of dividing the data is called splitting. Each split is made using a rule 

that aims to reduce the impurity or variation of the target variable within the resulting nodes. 

For regression trees, the most common measure of impurity is variance or mean squared error 

(MSE). The model evaluates potential splits and selects the one that results in the greatest 

reduction in variance, meaning that it produces child nodes with more similar target values 

than the parent node. 

Pruning: Growing a tree without constraints can lead to overfitting, where the model captures 

noise in the training data rather than the underlying pattern. To address this, trees are often 

pruned. Pre-pruning involves setting constraints such as the maximum depth of the tree or the 

minimum number of observations required to split a node. Post-pruning, on the other hand, 

involves building a full tree and then trimming branches based on performance on validation 

data. 

Depth of the tree: It refers to the number of levels or splits from the root node to the deepest 

leaf node. While deeper trees can model complex relationships, they are more prone to 

overfitting. Therefore, striking a balance between model complexity and generalizability is 

essential. 

 

3. Genesis of need for improved models like Random Forest regression 

Limitations of decision trees:  One major problem with decision trees is that they can only 

split data along straight lines based on one feature at a time (called axis-aligned splits). So, if 

the relationship in the data is complex, the tree needs to grow very deep with many splits to 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 199 - 
 

try and capture that complexity. Deep trees tend to memorize the training data too well, a 

problem known as overfitting. This means the model performs very well on the training set 

but poorly on new, unseen data. Due to this high variance and tendency to overfit, decision 

trees often perform worse compared to other models like Random Forests or Gradient 

Boosting Machines. 

Bagging (short form for Bootstrap Aggregating): To solve the overfitting problem and reduce 

the variance of decision trees, a technique called Bagging (Bootstrap Aggregating) is used. 

The idea is simple but powerful. First, many new training datasets are created by randomly 

sampling the original dataset with replacement - this process is called bootstrapping. Then, 

train a separate decision tree is trained on each of these bootstrapped datasets. Since each 

sample is slightly different, each tree learns slightly different patterns. Once all trees are 

trained, predictions are made by combining their outputs. For regression tasks, this means 

averaging the predictions from all the trees. For classification, a majority vote will decide the 

final class label. This process of combining many models helps to reduce the risk of overfitting 

from any one tree. Even though individual trees may be overfit, their errors tend to cancel 

each other out when averaged, resulting in a more stable and accurate overall prediction. 

Bagging has two major benefits: high expressiveness and low variance. Each individual 

decision tree is allowed to be fully grown, so it can model complex patterns. At the same time, 

because we average many different trees, the result becomes much less sensitive to the noise 

or randomness in the training data. This leads to a model that is both powerful and reliable. 

Thus, Bagging is an effective way to improve decision trees, and it forms the basis for more 

advanced models like Random Forests.  

 

In bagging, many decision trees are created by training each one on a different random sample 

(called a bootstrap sample) of the original dataset. However, even with different data, if a very 

strong predictor (say, a specific variable like "income") dominates, then most trees will end 

up splitting on that variable early in the tree. This means that although the trees are trained on 

different data, they behave similarly leading to ‘high correlation’ between trees. As a result, 

averaging their predictions may not reduce the variance as much as it is desired. 

To fix ideas, consider the formula for the variance of the average prediction from B trees. If 

the trees are not completely independent and have a correlation ρ, the variance of their average 

is given by 𝑉𝑎𝑟(𝑚𝑒𝑎𝑛) =  𝜌𝜎2 +
1−𝜌

𝐵
𝜎2 . As one increases the number of trees (B), the 
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second term (variance due to randomness) shrinks, but the first term (variance due to 

correlation) remains. This suggests that the overall variance reduction from bagging is limited 

by the correlation between trees. Random Forests address this limitation by adding an extra 

layer of randomness. 

 

4. Random Forests Regression 

Random Forests are an improvement over Bagging, especially in situations where the trees in 

the bagging ensemble are highly correlated. Like bagging, they use bootstrap samples to train 

each tree. But in addition, at each split in the tree, a random subset of features is selected. The 

best split is then chosen only from this subset, not from all features. This forces the trees to 

consider different variables and paths during training, which makes them less correlated. This 

‘de-correlation’ increases the diversity of the trees, and thus boosts the effectiveness of 

averaging. 

A good account on Random Forests can be found in, among others, Cutler et al. (2011), 

Protopapas and Rader (2025) etc. It has many real time applications, to cite one, Akselrud 

(2024) has employed Random Forests for pre-season predictions of total catches with 

uncertainty for California market squid (Doryteuthis opalescens), the most valuable fishery in 

California. 

Tuning Random Forests: Random Forests also introduce hyperparameters that can be adjusted 

for better performance. These include 

1. The number of predictors randomly chosen at each split: This controls how diverse the 

trees will be. 

2. The number of trees in the forest: More trees usually lead to more stability, but come at a 

computational cost. 

3. The minimum size of leaf nodes: This controls how deep each tree grows and helps avoid 

redundancy or overfitting in practice. 

 

While there are standard default values (e.g., square root of the number of predictors), it is 

best to tune these parameters using cross-validation. Fortunately, Random Forests also offer 

a helpful built-in validation method: Out-of-Bag (OOB) error. Since each tree is trained on 

only part of the data, the unused portion (about one-third of the data) can be used to test the 
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accuracy of the tree under consideration. This allows for efficient model evaluation without 

separate cross-validation sets. 

Variable Importance in Random Forests: Another powerful feature of Random Forests is that 

they can estimate variable importance. For each tree, the model first predicts using the out-of-

bag samples and records the accuracy. Then, it randomly shuffles the values of one feature in 

the data and measures how much the accuracy drops. If the accuracy decreases significantly, 

it means that feature was important for prediction. This process is repeated for each feature, 

and the average drop in accuracy tells us which variables are most useful in the model. 

5. Data, R code for Random Forest Regression and interpretation of results 

The following discussion is partially adopted from the work by Ehrlinger (2015).  

# Data: Boston Housing Data <There are 506 records, hence only Preview given below> 

 

 
 

The details about the variables in this Boston Housing data are: 

Crim - Crime rate by town.  

Zn - Proportion of residential land zoned for lots over 25,000 sq.ft.  

indus -Proportion of non-retail business acres per town.  

chas -Charles River (tract bounds river).  

nox -Nitrogen oxides concentration (10 ppm).  

rm -Number of rooms per dwelling. 

age -Proportion of units built prior to 1940.  

dis -Distances to Boston employment center.  

rad -Accessibility to highways.  

tax -Property-tax rate per $10,000.  

ptratio -Pupil-teacher ratio by town.  

black -Proportion of blacks by town.  

lstat -Lower status of the population (percent). 

medv -Median value of homes ($1000s).  

 

#R code for Random Forest Regression 

 

# 1. Install and Load Required Packages 
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library(MASS) 

library(randomForestSRC) 

library(reshape2) 

library(ggplot2) 

library(rpart) 

library(rpart.plot) 

library(caret) 

 

# 2. Load and Prepare the Boston Housing Data 

data(Boston, package = "MASS") 

Boston$chas <- as.logical(Boston$chas) 

 

# 3. Melt Data for Exploratory Visualization 

dta <- melt(Boston, id.vars = c("medv", "chas")) 

ggplot(dta, aes(x = medv, y = value, color = chas)) + 

  geom_point(alpha = 0.4) + 

  labs(y = "", x = "Median Value (medv)") + 

  scale_color_brewer(palette = "Set2") + 

  facet_wrap(~variable, scales = "free_y", ncol = 3) 

 

# 4. Random Forest Regression Model 

set.seed(123) 

rfsrc_Boston <- rfsrc(medv ~ ., data = Boston, ntree = 500, importance = TRUE) 

print(rfsrc_Boston) 

 

# 5. Variable Importance Plot 

vimp <- sort(rfsrc_Boston$importance, decreasing = TRUE) 

vimp_df <- data.frame(Variable = names(vimp), Importance = vimp) 

ggplot(vimp_df, aes(x = reorder(Variable, Importance), y = Importance)) + 

  geom_bar(stat = "identity", fill = "darkorange") + 

  coord_flip() + 

  labs(title = "Variable Importance", x = "Variables", y = "Importance") + 

  theme_minimal() 

 

# 6. Partial Dependence Plots 

plot.variable(rfsrc_Boston, xvar.names = c("lstat", "rm"), 

              partial = TRUE, show.plots = TRUE) 

 

# 7. Tree-like CART Model for Comparison 

tree_model <- rpart(medv ~ ., data = Boston, method = "anova") 

rpart.plot(tree_model, type = 2, extra = 101, fallen.leaves = TRUE, 

           main = "Regression Tree for medv") 

 

# 8. Predict and Evaluate the Model 

predictions <- predict(rfsrc_Boston)$predicted 

results <- data.frame(Actual = Boston$medv, Predicted = predictions) 

rmse_val <- RMSE(predictions, Boston$medv) 

r2_val <- R2(predictions, Boston$medv) 
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cat("\nModel Performance:\n") 

cat("RMSE:", round(rmse_val, 2), "\n") 

cat("R-squared:", round(r2_val, 2), "\n") 

 

# 9. Discretize medv for Confusion Matrix 

Boston$medv_cat <- cut(Boston$medv, 

                       breaks = quantile(Boston$medv, probs = seq(0, 1, 0.25)), 

                       labels = c("Low", "MidLow", "MidHigh", "High"), 

                       include.lowest = TRUE) 

 

results$Predicted_cat <- cut(predictions, 

                             breaks = quantile(Boston$medv, probs = seq(0, 1, 0.25)), 

                             labels = c("Low", "MidLow", "MidHigh", "High"), 

                             include.lowest = TRUE) 

 

confusion <- confusionMatrix(results$Predicted_cat, Boston$medv_cat) 

print(confusion) 

 

# Interpretation 

 
 

The Random Forest builds many decision trees to make better predictions. Each tree is built 

by choosing a random subset of the predictor variables at every decision point (called a 

"split"). The tree keeps splitting the data based on which variable best separates the values 

until it meets a stopping rule (like when the group is too small or the predictions are similar 

enough). In regression problems (like predicting house prices – here Median value of homes), 

the trees try to minimize the average squared error between the predicted and actual values. 

In the end, the Random Forest makes a prediction by averaging the results from all trees. For 

this Boston Housing example, the Random Forest was trained to predict medv (the median 
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value of houses) using the other 13 variables (like crime rate, number of rooms, etc.). The 

forest had 1000 trees (the default) and considered five variables at each split.  

 

The regression tree for the Boston housing dataset provides a clear and interpretable 

breakdown of how different variables influence the median home value (medv). The tree 

begins by splitting on the variable rm (average number of rooms per dwelling), with a 

threshold of 6.9 rooms. This initial split distinguishes between houses with fewer rooms 

(lower prices) and those with more rooms (higher prices), highlighting rm as a critical 

determinant of home value. For homes with fewer than 6.9 rooms, further splits are made on 

socioeconomic indicators such as lstat (percentage of lower status population) and crim (crime 

rate), which help identify areas with depressed home values due to higher poverty and crime. 

On the other side, homes with rm above 6.9 split on more refined thresholds of rm and lstat, 

ultimately identifying groups of homes with very high median values, especially those with 

low poverty and high room counts. The predicted values at each terminal node represent 

average home prices for that subgroup, and the structure of the tree offers valuable insights 

into how combinations of housing, demographic, and economic variables drive home values 

in the Boston area. This tree, though simpler than a random forest, helps us understand the 

key drivers and interactions in a visual, easy-to-interpret format. 

 

 

 

 

 

 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 205 - 
 

References 
 

• Akselrud, C.I.A. (2024). Random forest regression models in ecology: Accounting for 

messy biological data and producing predictions with uncertainty, Fisheries Research, 

280, 107161, https://doi.org/10.1016/j.fishres.2024.107161 

 

• Cutler, A., Cutler, D.R., Stevens, J.R. (2012). Random Forests. In: Zhang, C., Ma, Y. 

(eds) Ensemble Machine Learning. Springer, New York, NY, pp 157-175. 

https://doi.org/10.1007/978-1-4419-9326-7_5. 

 

• Ehrlinger (2015). ggRandomForests: Random Forests for Regression, pages 1-30, 

https://arxiv.org/pdf/1501.07196 

 

• Protopapas, P. and Rader, K. (2025). Regression Trees, Bagging and Random Forest, 

https://harvard-iacs.github.io/2018-CS109A/lectures/lecture-

16/presentation/lecture16_bagging_random_forest.pdf, accessed on 30 June, 2025. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.fishres.2024.107161
https://doi.org/10.1007/978-1-4419-9326-7_5
https://arxiv.org/pdf/1501.07196
https://harvard-iacs.github.io/2018-CS109A/lectures/lecture-16/presentation/lecture16_bagging_random_forest.pdf
https://harvard-iacs.github.io/2018-CS109A/lectures/lecture-16/presentation/lecture16_bagging_random_forest.pdf


 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 206 - 
 

Xgboost Algorithm 

Kapil Choudhary  

College of Agriculture, Sumerpur (Pali)- 306902, Agriculture University, Jodhpur 

Email: kapiliasri@gmail.com 

 

1. Introduction 

Time series data is a collection of observations recorded sequentially over time, typically at 

consistent intervals such as hourly, daily, monthly, or annually. This form of data is central to 

many real-world applications, including but not limited to financial market analysis, weather 

prediction, traffic forecasting, energy consumption monitoring, and agricultural output 

assessment. The temporal order and dependency of observations are crucial characteristics of 

time series data, which distinguish it from other types of datasets. Time series forecasting 

involves using historical data to predict future values. Accurate forecasting is vital in strategic 

decision-making processes across sectors such as finance (forecasting stock prices), energy 

(projecting electricity demand), agriculture (predicting crop prices), and healthcare 

(forecasting disease outbreaks). It aids in planning, resource allocation, inventory management, 

and risk assessment. To achieve reliable forecasts, it is essential to understand and model the 

underlying patterns of time series data, such as trends (long-term increases or decreases), 

seasonality (systematic calendar-related movements), cyclic behavior (longer-term fluctuations 

without fixed periodicity), and irregular variations (noise). Traditional time series models such 

as ARIMA, Exponential Smoothing, and SARIMA are statistical in nature and have been 

widely used for decades. While these models are effective in capturing linear patterns and 

seasonality, they often struggle with nonlinear relationships, complex feature interactions, and 

high-dimensional data. Moreover, they require assumptions such as stationarity, which may 

not hold in real-world scenarios. As a result, their applicability becomes limited when dealing 

with large, noisy, and intricate datasets. 

To overcome these limitations, machine learning models have been increasingly adopted for 

time series forecasting. Among them, XGBoost (Extreme Gradient Boosting) has emerged as 

a powerful tool. XGBoost is a highly efficient and scalable implementation of the gradient 

boosting framework that builds an ensemble of decision trees sequentially to improve model 

performance. Originally designed for classification and regression on tabular data, XGBoost 

can be adapted for time series tasks through appropriate preprocessing techniques. Although 
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XGBoost does not inherently account for the temporal structure of data, it can effectively model 

time series when transformed into a supervised learning format. This involves the creation of 

lag features, rolling statistics, and calendar-based indicators. Once the time-based features are 

engineered, XGBoost can learn from the transformed data and capture complex, non-linear 

dependencies. It includes features like regularization to control overfitting, efficient handling 

of missing data, and support for parallel computation, which make it particularly suitable for 

large-scale forecasting problems. In essence, XGBoost provides a flexible and robust 

alternative to traditional time series models, especially when used in hybrid frameworks or 

combined with domain-specific feature engineering. Its adaptability and predictive power have 

made it a popular choice in both academic research and industry applications for forecasting 

tasks. 

2. Gradient Boosting and the XGBoost Framework 

To understand the strength of XGBoost, it is essential to first grasp the underlying principles 

of gradient boosting. Gradient boosting is an ensemble learning technique that constructs a 

strong predictive model by combining the outputs of several weaker models, typically decision 

trees. The main idea is to build the model in a sequential manner, where each new tree corrects 

the errors made by the previous ensemble. The model improves over iterations by minimizing 

a specified loss function using a gradient descent approach. 

XGBoost enhances this process by incorporating several advanced features that make it faster, 

more accurate, and more scalable. It introduces regularization terms (L1 and L2) in the 

objective function to prevent overfitting, which is particularly beneficial when dealing with 

noisy or high-dimensional datasets. XGBoost also employs an efficient algorithm known as 

"approximate tree learning," which allows for faster computation and memory optimization. 

Additionally, it supports parallel and distributed computing, making it highly efficient for large 

datasets. 

Another key innovation of XGBoost is its sparsity-aware algorithm, which handles missing 

values effectively during model training. This is crucial in real-world scenarios where time 

series data often contains gaps or missing records. Furthermore, XGBoost offers built-in cross-

validation functionality, early stopping criteria, and tree pruning mechanisms, all of which 

contribute to improved model robustness and generalization performance. In the context of 

time series forecasting, these features allow XGBoost to adapt to the complexity and dynamics 
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of temporal data, even though it is not inherently time-aware. By using lagged inputs and 

engineered time features, the model can learn from historical patterns and generalize them to 

future observations. This makes XGBoost not just a viable alternative, but often a superior 

choice compared to classical time series models, particularly when non-linearity, high variance, 

and multiple influencing variables are involved. 

Ultimately, XGBoost serves as a bridge between traditional statistical methods and modern 

machine learning approaches. Its flexible architecture allows integration with other techniques 

such as signal decomposition, neural networks, or statistical preprocessing methods, enabling 

the development of hybrid models that leverage the strengths of multiple forecasting 

paradigms. Following are the mathematical formulation of the XGBoost model for time series 

forecasting:. 

1. Feature Construction 

Let the univariate time series be represented as 𝑌𝑡, 𝑡 = 1,2,3…𝑇 , where T is the total number 

of observations. The objective is to learn a function 𝑓 that maps past observations to a future 

value: �̂�𝑡 = 𝑓(𝑋𝑡), where 𝑋𝑡 is a feature vector derived from past observations. 

To frame the time series forecasting as a supervised learning problem, we construct feature 

vectors using lagged values: 𝑋𝑡 = [𝑌𝑡−1, 𝑌𝑡−2, 𝑌𝑡−3… , 𝑌𝑡−𝑃] 

This results in a training dataset: (𝑋𝑡, 𝑌𝑡) 𝑓𝑜𝑟 𝑡 = 𝑝 + 1, … , 𝑇 

2. XG boost Model 

XGBoost models the prediction as an ensemble of K regression trees: 

�̂�𝑡 =∑𝑓𝑘(𝑋𝑡)

𝐾

𝑘=1

 

Where 𝑓𝑘 ∈ 𝓕 Here, 𝓕 is the space of regression trees. 

3. Objective Function 

The regularized objective function is defined as: 𝐿 = ∑ 𝑙(𝑇
𝑡=𝑝+1  𝑌𝑡, �̂�𝑡) + ∑ 𝜑𝐾

𝑘=1 (𝑓𝑘) 

Where 𝑙 is typically the squared loss and the regularization term 𝜑  
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4. Addative Training 

XGBoost builds the model in an additive manner. At step m: �̂�𝑡(𝑚) = �̂�𝑡(𝑚 − 1) + 𝑓𝑚(𝑋𝑡) 

5. Forecasting 

Once trained, the model forecasts the value at horizon h as: 

�̂�𝑇+ℎ = 𝑓(𝑋𝑇+ℎ) 

6. Evaluation  

Standard error metrics used for evaluating the model include: 

RMSE= √
1

𝑛
∑ (𝑦(𝑡) − �̂�(𝑡))2𝑛
𝑡=1 ;     

           MAPE =   
1

𝑛
∑ |

𝑦(𝑡)−�̂�(𝑡)

𝑦(𝑡)
|𝑛

𝑡=1      

     MAE =  
1

𝑛
∑ |𝑦(𝑡) − �̂�(𝑡)|𝑛
𝑡=1 ;         

where 𝑦(𝑡) and �̂�(𝑡) stand for the actual values and predicted values 

XG boost python code 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.metrics import mean_squared_error, mean_absolute_error 

from sklearn.model_selection import TimeSeriesSplit 

import xgboost as xgb 

import warnings 

warnings.filterwarnings('ignore') 

 

# Set style for plots 

plt.style.use('seaborn-v0_8') 

sns.set_palette("husl") 

def install_packages(): 

    """Install required packages if not available""" 

    import subprocess 

    import sys 

        packages = ['pandas', 'numpy', 'matplotlib', 'seaborn', 'scikit-learn', 'xgboost'] 

     

    for package in packages: 

        try: 

            __import__(package) 
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        except ImportError: 

            print(f"Installing {package}...") 

            subprocess.check_call([sys.executable, "-m", "pip", "install", package]) 

 

# Uncomment the line below if you need to install packages 

# install_packages() 

 

def read_data_from_clipboard(): 

    """Read data from clipboard""" 

    try: 

        # Try to read from clipboard 

        df = pd.read_clipboard(sep='\t') 

        print("Data successfully read from clipboard!") 

        print(f"Data shape: {df.shape}") 

        print("\nFirst few rows:") 

        print(df.head()) 

        return df 

    except Exception as e: 

        print(f"Error reading from clipboard: {e}") 

        print("Please make sure you have copied tab-separated data to clipboard") 

        return None 

def create_lag_features(data, lags): 

    """Create lagged features for time series""" 

    df = pd.DataFrame() 

    for lag in lags: 

        df[f'lag_{lag}'] = data.shift(lag) 

    return df 

 

def create_time_features(n): 

    """Create time-based features""" 

    time_index = np.arange(1, n + 1) 

    df = pd.DataFrame({ 

        'trend': time_index, 

        'trend_sq': time_index ** 2, 

        'sin_annual': np.sin(2 * np.pi * time_index / 12),  # Assuming monthly data 

        'cos_annual': np.cos(2 * np.pi * time_index / 12), 

        'sin_quarterly': np.sin(2 * np.pi * time_index / 4), 

        'cos_quarterly': np.cos(2 * np.pi * time_index / 4), 

        'sin_weekly': np.sin(2 * np.pi * time_index / 7),   # Weekly pattern 

        'cos_weekly': np.cos(2 * np.pi * time_index / 7) 

    }) 

    return df 

 

def calculate_metrics(y_true, y_pred): 

    """Calculate evaluation metrics""" 

    rmse = np.sqrt(mean_squared_error(y_true, y_pred)) 

    mae = mean_absolute_error(y_true, y_pred) 

    mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100 
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    return rmse, mae, mape 

 

def plot_results(ts_data, test_predictions, forecasts, split_point): 

    """Plot actual vs predicted values and forecasts""" 

    plt.figure(figsize=(15, 8)) 

     

    # Plot last 50 points or all if less 

    n_plot = min(50, len(ts_data)) 

    start_idx = len(ts_data) - n_plot 

     

    # Actual data 

    plt.plot(range(start_idx, len(ts_data)),  

             ts_data[start_idx:],  

             label='Actual', color='blue', linewidth=2) 

        # Test predictions 

    if len(test_predictions) > 0: 

        test_start = max(split_point, start_idx) 

        test_end = min(split_point + len(test_predictions), len(ts_data)) 

        test_range = range(test_start, test_end) 

        test_pred_slice = test_predictions[:len(test_range)] 

         

        plt.plot(test_range, test_pred_slice,  

                label='Test Predictions', color='red', linewidth=2, alpha=0.8) 

     

    # Forecasts 

    forecast_range = range(len(ts_data), len(ts_data) + len(forecasts)) 

    plt.plot(forecast_range, forecasts,  

             label='Forecast', color='green', linewidth=2, marker='o')  

    plt.title('XGBoost Time Series Forecasting Results', fontsize=16, fontweight='bold') 

    plt.xlabel('Time Index', fontsize=12) 

    plt.ylabel('Value', fontsize=12) 

    plt.legend(fontsize=12) 

    plt.grid(True, alpha=0.3) 

    plt.tight_layout() 

    plt.show() 

 

   def plot_feature_importance(model, feature_names, top_n=15): 

    """Plot feature importance""" 

    importance_dict = model.get_booster().get_score(importance_type='weight') 

     

    # Convert to DataFrame and sort 

    importance_df = pd.DataFrame(list(importance_dict.items()),  

                                columns=['feature', 'importance']) 

    importance_df = importance_df.sort_values('importance', ascending=True).tail(top_n) 

     

    plt.figure(figsize=(10, 8)) 

    plt.barh(range(len(importance_df)), importance_df['importance']) 

    plt.yticks(range(len(importance_df)), importance_df['feature']) 
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    plt.xlabel('Feature Importance', fontsize=12) 

    plt.title(f'Top {top_n} Feature Importance', fontsize=14, fontweight='bold') 

    plt.tight_layout() 

    plt.show() 

     

    return importance_df 

 

def forecast_multi_step(model, last_values, time_features_future, n_ahead, max_lags): 

    """Generate multi-step ahead forecasts""" 

    forecasts = [] 

    current_lags = list(last_values[-max_lags:]) 

     

    for i in range(n_ahead): 

        # Create feature vector 

        lag_features = current_lags[::-1]  # Reverse for most recent first 

        time_features = time_features_future.iloc[i].values 

         

        # Combine features 

        features = np.array(lag_features + list(time_features)).reshape(1, -1) 

         

        # Make prediction 

        pred = model.predict(features)[0] 

        forecasts.append(pred) 

         

        # Update lags for next iteration 

        current_lags = current_lags[1:] + [pred] 

     

    return np.array(forecasts) 

 

def main(): 

    """Main function to run XGBoost time series forecasting""" 

     

    print("=== XGBoost Univariate Time Series Forecasting ===\n") 

     

    # Read data from clipboard 

    df = read_data_from_clipboard() 

    if df is None: 

        return 

     

    # Get the first numeric column 

    numeric_columns = df.select_dtypes(include=[np.number]).columns 

    if len(numeric_columns) == 0: 

        print("No numeric columns found in the data!") 

        return 

     

    ts_column = numeric_columns[0] 

    ts_data = df[ts_column].values 
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    print(f"\nUsing column: {ts_column}") 

    print(f"Time series length: {len(ts_data)}") 

    print(f"Data range: {ts_data.min():.4f} to {ts_data.max():.4f}") 

     

    # Parameters 

    max_lags = 12 

    forecast_horizon = 6 

    test_size = 0.2 

     

    # Create features 

    print("\nCreating features...") 

     

    # Lag features 

    lag_features = create_lag_features(ts_data, range(1, max_lags + 1)) 

     

    # Time features 

    time_features = create_time_features(len(ts_data)) 

     

    # Combine features 

    all_features = pd.concat([lag_features, time_features], axis=1) 

     

    # Create target variable (next period value) 

    target = pd.Series(ts_data).shift(-1) 

     

    # Remove rows with NaN values 

    valid_idx = ~(all_features.isnull().any(axis=1) | target.isnull()) 

    X = all_features[valid_idx] 

    y = target[valid_idx] 

     

    print(f"Training samples after removing NAs: {len(X)}") 

     

    # Split data 

    split_point = int(len(X) * (1 - test_size)) 

    X_train, X_test = X[:split_point], X[split_point:] 

    y_train, y_test = y[:split_point], y[split_point:] 

     

    print(f"Training samples: {len(X_train)}") 

    print(f"Test samples: {len(X_test)}") 

     

    # XGBoost parameters 

    params = { 

        'objective': 'reg:squarederror', 

        'eval_metric': 'rmse', 

        'eta': 0.1, 

        'max_depth': 6, 

        'min_child_weight': 1, 

        'subsample': 0.8, 

        'colsample_bytree': 0.8, 
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        'gamma': 0, 

        'alpha': 0, 

        'lambda': 1, 

        'random_state': 42, 

        'verbosity': 0 

    } 

     

    # Create DMatrix objects 

    dtrain = xgb.DMatrix(X_train, label=y_train) 

    dtest = xgb.DMatrix(X_test, label=y_test) 

     

    # Train with early stopping 

    print("\nTraining XGBoost model...") 

     

    model = xgb.train( 

        params=params, 

        dtrain=dtrain, 

        num_boost_round=1000, 

        evals=[(dtrain, 'train'), (dtest, 'test')], 

        early_stopping_rounds=50, 

        verbose_eval=False 

    ) 

     

    print(f"Optimal rounds: {model.best_iteration}") 

     

    # Make predictions on test set 

    test_predictions = model.predict(dtest) 

     

    # Calculate metrics 

    rmse_test, mae_test, mape_test = calculate_metrics(y_test, test_predictions) 

     

    print(f"\n=== Test Set Performance ===") 

    print(f"RMSE: {rmse_test:.4f}") 

    print(f"MAE: {mae_test:.4f}") 

    print(f"MAPE: {mape_test:.2f}%") 

     

    # Feature importance 

    print(f"\n=== Feature Importance ===") 

    importance_df = plot_feature_importance(model, X.columns) 

    print("\nTop 10 Features:") 

    print(importance_df.tail(10)) 

     

    # Generate forecasts 

    print(f"\n=== Generating Forecasts ===") 

     

    # Create future time features 

    future_time_features = create_time_features(len(ts_data) + forecast_horizon) 

    future_time_features = future_time_features.iloc[len(ts_data):] 
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    # Generate forecasts 

    forecasts = forecast_multi_step( 

        model=model, 

        last_values=ts_data, 

        time_features_future=future_time_features, 

        n_ahead=forecast_horizon, 

        max_lags=max_lags 

    ) 

     

    print(f"Forecasts for next {forecast_horizon} periods:") 

    for i, forecast in enumerate(forecasts, 1): 

        print(f"Period {i}: {forecast:.4f}") 

     

    # Visualization 

    print(f"\n=== Creating Visualizations ===") 

    plot_results(ts_data, test_predictions, forecasts, split_point) 

     

    # Summary 

    print(f"\n=== MODEL SUMMARY ===") 

    print(f"Model type: XGBoost") 

    print(f"Training samples: {len(X_train)}") 

    print(f"Test samples: {len(X_test)}") 

    print(f"Number of features: {X.shape[1]}") 

    print(f"Optimal boosting rounds: {model.best_iteration}") 

    print(f"Test RMSE: {rmse_test:.4f}") 

    print(f"Forecast horizon: {forecast_horizon}") 

     

    # Return results 

    results = { 

        'model': model, 

        'forecasts': forecasts, 

        'test_rmse': rmse_test, 

        'test_mae': mae_test, 

        'test_mape': mape_test, 

        'feature_importance': importance_df, 

        'X_train': X_train, 

        'X_test': X_test, 

        'y_train': y_train, 

        'y_test': y_test, 

        'test_predictions': test_predictions 

    } 

 

    print(f"\nForecasting complete! Results stored in 'results' dictionary.") 

    return results 

# Run the main function 

if __name__ == "__main__": 

    results = main() 
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Abstract 

This chapter explores the application of deep learning (DL) models namely Recurrent Neural 

Networks (RNN), Gated Recurrent Units (GRU), Convolutional Neural Networks (CNN), 

Long Short-Term Memory (LSTM), and Transformers in the context of abiotic stress 

management in agriculture. Abiotic stress factors such as drought, temperature extremes, and 

erratic rainfall pose significant threats to crop productivity and food security. Traditional 

statistical and machine learning methods often fall short in capturing complex temporal 

patterns and dependencies inherent in environmental and crop-related data. Deep learning 

models, with their capacity to learn non-linear, high-dimensional, and time-dependent features, 

offer robust alternatives for forecasting, classification, and decision support. The chapter 

introduces each architecture with relevant mathematical foundations and showcases their 

comparative strengths in handling time series data, such as rainfall and crop price forecasting. 

This comprehensive overview emphasizes the practical potential of DL models in enhancing 

resilience and precision in agricultural systems under changing climatic conditions. 

Introduction & Methodology 

Time series data in agriculture such as rainfall variability, temperature fluctuations, soil 

moisture dynamics, and crop phenology are critical for understanding and managing abiotic 

stresses like drought, heatwaves, salinity, and waterlogging. Traditional time series forecasting 

techniques such as Holt–Winters, Kalman Filters, ARIMA and SARIMA (Box et al., 1995) are 

commonly employed for such tasks. However, their reliance on assumptions like linearity, 

stationarity, and predefined lag structures limits their effectiveness in modeling the nonlinear, 

non-stationary, and complex interactions inherent in agrometeorological data. Statistical 

enhancements like ARCH/GARCH, TAR, and Smooth Transition Models offer some 

improvements but often involve cumbersome tuning and limited interpretability (Engle, 1982; 

Bollerslev, 1986; Tong & Lim, 2009). 
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In response to these challenges, machine learning models such as Support Vector Regression 

(SVR), Random Forests, and Gradient Boosting Machines (GBM) have been applied to rainfall 

prediction, yield forecasting, and early stress detection. These models are more flexible in 

capturing nonlinear patterns but still lack an innate capability to learn temporal dependencies 

from sequential data. 

This is where Deep Learning (DL) transforms the game. By enabling models to learn patterns 

directly from raw sequences without manual feature engineering DL opens up new possibilities 

for accurate and scalable prediction in agriculture. Let’s take a deep dive into Deep Learning, 

starting with Recurrent Neural Networks (RNNs) and their powerful variants! 

Note: (Abbreviations and Hyperparameters details are listed at the end of the chapter in the 

supplementary section) 

Understanding Sequential Networks 

1. Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are a class of neural networks designed to model 

sequential data, where the current prediction depends not only on the current input but also 

on past inputs. This temporal dependency makes RNNs uniquely suitable for tasks like 

weather forecasting, Time Series Forecasting, NDVI time series modeling, or crop stress 

prediction, where the sequence of past conditions (Price Series, temperature, rainfall, etc.) 

directly influences future outcomes. 

RNNs achieve this by maintaining a hidden state that gets updated at each time step as new 

data arrives. This allows the model to form a form of internal memory, capturing patterns 

over time. 
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Figure 1: Recurrent Neural Network have loops (Ref: Olah, C. (2015)) 

In the above diagram, a chunk of neural network, 𝐴, looks at some input 𝑥𝑡 and outputs a value 

ℎ𝑡. A loop allows information to be passed from one step of the network to the next. 

These loops make recurrent neural networks seem kind of mysterious. However, if you think a bit 

more, it turns out that they aren’t all that different than a normal neural network. A recurrent neural 

network can be thought of as multiple copies of the same network, each passing a message to a 

successor. Consider what happens if we unroll the loop: 

 

Figure 2: An unrolled recurrent neural network (Ref: Olah, C. (2015)) 

This chain-like nature reveals that recurrent neural networks are intimately related to sequences 

and lists. They’re the natural architecture of neural network to use for such data. 

And they certainly are used! In the last few years, there have been incredible success applying 

RNNs to a variety of problems: speech recognition, language modeling, translation, image 

captioning… The list goes on. 
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Figure3: Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input 

vectors are in red, output vectors are in blue and green vectors hold the RNN's state (more on 

this soon). From left to right: (1) Vanilla mode of processing without RNN, from fixed-sized 

input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image 

captioning takes an image and outputs a sentence of words). (3) Sequence input (e.g. sentiment 

analysis where a given sentence is classified as expressing positive or negative sentiment). (4) 

Sequence input and sequence output (e.g. Machine Translation: an RNN reads a sentence in 

English and then outputs a sentence in French). (5) Synced sequence input and output (e.g. 

video classification where we wish to label each frame of the video). Notice that in every case 

are no pre-specified constraints on the lengths sequences because the recurrent transformation 

(green) is fixed and can be applied as many times as we like. (Ref: Karpathy 2015) 

1.1.Core Mechanism 

Training RNNs involves backpropagation through time (BPTT), adjusting weights to refine 

prediction accuracy. Despite exhibiting various architectures, such as, one-to-one, one-to-

many, many-to-many and many-to-one. RNNs encounter challenges like exploding and 

vanishing gradients, impacting stability and learning efficiency. Sequential data processing 

also constrains scalability, potentially leading to slow training times, rendering them less 

suitable for certain sequential tasks. 
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Figure 4: RNN architecture (Avinash et al., 2024) 

Hidden State Update: The workflow involves sequential input processing and hidden state 

update. At each time step 𝑡, the hidden state ℎ𝑡 is computed using the input 𝑥𝑡 and the previous 

hidden state ℎ𝑡−1: 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖ℎ. 𝑥𝑡 +𝑊ℎℎ. ℎ𝑡−1 + 𝑏ℎ)                               … [1] 

Output Prediction: The output �̂�𝑡 is predicted based on the current hidden state: 

�̂�𝑡 = 𝑊ℎ𝑦. ℎ𝑡 + 𝑏𝑦                                    … [2] 

Loss Function (MSE): During training, the loss 𝐿𝑡: 

𝐿𝑡 =
1

𝑡
 ∑(�̂�𝑡 − 𝑦𝑡)

2

𝑇

𝑡=1

                                            … [3] 

Gradient Computation: These are computed with respect to the model parameters for weight 

updates: 

𝜕𝐿𝑡
𝜕𝑊ℎ𝑦

,
𝜕𝐿𝑡
𝜕ℎ𝑡

,
𝜕𝐿𝑡
𝜕𝑊𝑖ℎ

,
𝜕𝐿𝑡
𝜕𝑊ℎℎ

                                        … [4] 

Weight Update (Gradient Descent): These gradients are used in the weight update through 

gradient descent as depicted in Eq. (5): 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝜂.
𝜕𝐿𝑡
𝜕𝜃𝑜𝑙𝑑

                                          … [5] 

Where: 

• 𝜂: learning rate 

• 𝜃 ∈{𝑊𝑖ℎ, 𝑊ℎ𝑦,𝑊ℎℎ, 𝑏ℎ, 𝑏𝑦}  

Here, 𝑊𝑖ℎ , 𝑊ℎℎ , 𝑊ℎ𝑦  are the weight matrices, 𝑏ℎ , 𝑏𝑦  are the biases, the activation function 

used is typically 𝒕𝒂𝒏𝒉, which helps bound the hidden state values. However, due to issues like 

long-term dependency degradation, newer architectures such as Long Short-Term Memory 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 222 - 
 

(LSTM) and Gated Recurrent Unit (GRU) have been developed to enhance performance on 

sequential learning tasks. 

2. Long Short-Term Memory (LSTM) 

In 1997, Hochreiter (Hochreiter, 1997) recognized that traditional RNNs were unable to retain 

important historical information for extended periods of time. To address this issue, they 

developed the LSTM model, which introduced gate mechanisms to the RNN framework. 

LSTMs utilize three gate structures, namely the forget, input and output gates, which are 

implemented as sigmoid layers. These gates receive inputs from both the previous network 

output (ℎ𝑡−1) and the current input (𝑥𝑡) and are designed to decide whether to retain or delete 

the information processed by the previous cell state (𝐶𝑡−1). 

The forget gate plays a critical role in the LSTM architecture, as it determines whether 

previously processed information is necessary for further analysis. The output of this 

processing gate is represented as 𝑓𝑡 . By incorporating these gate mechanisms, LSTMs can 

process and predict useful information with extended time intervals and delays in TS. 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                       … [6] 

The forget gate in the LSTM model plays a crucial role in determining the relevance of 

previously processed information. Its output, represented as 𝑓𝑡 , determines whether 

information should be retained or discarded. A value of 0 indicates that the information should 

be completely discarded, while a value of 1 indicates that it should be retained entirely. 

The forget gate utilizes a weight matrix (𝑊𝑓), a sigmoid function 𝜎 and a bias term (𝑏𝑓) to 

determine the importance of the previous cell state (𝐶𝑡−1) in the current computation. 

In addition to the forget gate, the LSTM model also employs an input gate, which determines 

which values require updating. This gate combines the previous network output (ℎ𝑡−1) and 

current input (𝑥𝑡) using a weight matrix (𝑊𝑖), sigmoid function (𝜎) and bias term (𝑏𝑖) to 

produce a new candidate value that can be added to the current cell state (𝐶𝑡). 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                    … [7] 
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The input gate of the LSTM model receives a bias term (𝑏𝑖) in addition to the input weighted 

by the weight matrix (𝑊𝑖). This input is processed using the sigmoid function (𝜎) to determine 

which information needs to be updated before being transferred to the cell state (𝐶𝑡). 

The output of the input gate (𝑖𝑡), takes on values between 0 and 1, inclusive, indicating the 

degree to which information needs to be updated in the current computation. The use of a 

sigmoid function allows for this output to be interpreted as a probability and ensures that the 

input gate's influence on the current computation remains bounded. 

𝐶�̂� = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                             … [8] 

 

Figure 5: LSTM architecture (Avinash et al., 2024) 

Equation (8) represents the updated cell state value, denoted as 𝐶�̂�, which is computed by taking 

into account the current input and hidden node (ℎ𝑡−1), which are weighted with 𝑊𝑐 and added 

bias (𝑏𝑐), respectively and then passed through the hyperbolic tangent (𝑡𝑎𝑛ℎ) function that 

yields a value ranging from –1 to +1. The forget gate's non-zero output (𝑓𝑡) indicates that it 

contains useful information from the previous cell state (𝐶𝑡−1), which is multiplied with (𝐶𝑡−1) 

to forget old and irrelevant features. The output from the input gate (𝑖𝑡) is then multiplied with 

the new candidate status (𝐶�̂�) to incorporate additional information and refine the updated 

(𝐶𝑡). 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̂�                                                        … [9] 
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The current network module is determined based on the current cell state and the output gate 

decides which parts of the cell state should be used as output. The output gate utilizes a 

sigmoidal function to determine which information should be kept or discarded. The previous 

cryptic output and the current input are multiplied with the weight matrix (𝑊𝑜) and added with 

the bias (𝑏𝑜) to generate the input to the sigmoid function. The candidate value of the current 

output (ℎ𝑡) is computed by taking the hyperbolic tangent (𝑡𝑎𝑛ℎ) of the current state (𝐶𝑡), 

which is then multiplied with the output gate value (𝑜𝑡) to produce the final output value. 

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                  … [10] 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)                                                           … [11] 

The fully connected layer of the LSTM model employs the Rectified Linear Unit (ReLU) as its 

activation function. To fine-tune the performance of the model, the mean square error (MSE) 

is utilized as the loss function. 

3. Gated Recurrent Unit (GRU) 

The Gated Recurrent Unit (GRU), introduced by Chung et al. (2014), is a streamlined and 

computationally efficient alternative to the Long Short-Term Memory (LSTM) network. 

Unlike LSTM, GRU utilizes a single hidden state by merging the cell state and hidden state, 

and it replaces the traditional three gates (input, forget, output) with only two: the update gate 

and the reset gate. This reduction in complexity leads to fewer trainable parameters, making 

GRUs faster and more cost-effective, particularly beneficial for time series forecasting 

applications. 

GRU layers leverage the fact that recent events are more informative for predicting the future 

than distant past events. By remembering recent past information more efficiently than older 

information, GRU confirms the present task. The reset gate in GRU layers, which is composed 

of the reset and hidden states, determines the extent of previous information to forget, while 

the update gate remembers the useful information for predicting the present. The update gate 

describes how much of the GRU unit or cell will be updated. 

𝑍𝑡(𝑈𝑝𝑑𝑎𝑡𝑒 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑧. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧)                                 … [11] 

𝑅𝑡(𝑅𝑒𝑠𝑒𝑡 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑅 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑅)                                … [12] 
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Figure 6: GRU architecture 

The candidate activation in the GRU layers is computed using the hyperbolic tangent (𝑡𝑎𝑛ℎ) 

function of the reset gate, as represented in equation (13). This function is used to regulate the 

amount of information that needs to be added to the cell state based on the reset gate's decision 

of which previous information to forget. The output of the 𝑡𝑎𝑛ℎ function ranges between -1 

and 1, which allows the GRU to adaptively control the flow of information and maintain the 

relevant information while discarding the irrelevant one. 

ℎ�̃� = 𝑡𝑎𝑛ℎ(𝑊. [𝑅𝑡 .  ℎ𝑡−1, 𝑥𝑡)] + 𝑏)                                   … [13] 

hidden state of the GRU layer is determined by the input and the previous hidden state. 

ℎ𝑡 = (1 − 𝑍𝑡) ∗ ℎ𝑡−1 + 𝑍𝑡 ∗ ℎ�̃�)                                           … [14] 

The update and reset gates, controlled by sigmoid activation function, are used to manipulate 

the recurrent connections and the inputs. The new member gate is obtained through the 

hyperbolic tangent function applied to the reset gate. Weight matrices, represented by 𝑊𝑍, 𝑊𝑅 

and 𝑊, along with the bias terms 𝑏𝑍 and 𝑏𝑅 are used to control the input values in the update 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 226 - 
 

and reset gates (Fig.6). The final hidden state is calculated by combining the previous hidden 

state and the new member gate with the update gate. 

Due to their ability to balance memory efficiency with computational simplicity, GRUs have 

become a standard architecture for modeling agricultural time series such as rainfall 

forecasting, NDVI trend analysis, and drought prediction etc. 

4. Transformer 

 The Transformer model is an encoder/decoder-based architecture that is utilized for machine 

translation tasks in which it translates one sequence of language to another proposed by 

(Vaswani et al., 2017). Now it is widely used in time series, vision, genomics, and climate 

modeling. Through the use of self-attention mechanisms, the Transformer model is able to 

effectively evaluate the significance of different elements within the input data. This capability 

enhances the accuracy of the model's predictions, making it highly efficient for various tasks. 

Moreover, Transformer is equipped with an attention mechanism that facilitates faster learning 

compared to other DL architectures. 

4.1.The Architecture of Transformer: 

The Transformer model is a type of neural sequence transformation model that utilizes an 

encoder-decoder structure. The encoding process involves transforming an input sequence 

represented symbolically as (𝑥1, … , 𝑥𝑛)   into a continuous representation 𝑧 = (𝑧1, … , 𝑧𝑛).  The 

decoder then generates the output sequence (𝑦1, … , 𝑦𝑚)  symbol by symbol using z as input. 

The model is autoregressive, meaning it uses newly generated symbols based on previously 

created ones at each stage. The encoder and decoder layers are stacked and interconnected for 

self-awareness, with the encoder depicted in the left half and the decoder in the right half of 

Figure 7. 
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Figure 7: Transformer architecture (Nayak et al., 2024b) 

4.1.1. Input Embedding and Positional Encoding: The purpose of the input embedding is to 

transform each item in the input sequence into a high dimensional vector space. This 

transformation allows the model to capture more complex features of each of them. 
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                                                   𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋𝑖) = 𝑋𝑖𝐸                                    … [15] 

where, 

𝑋𝑖: Represents the 𝑖𝑡ℎ item in the input sequence 

𝐸: The embedding matrix, typically learned during training 

For TS, each 𝑋𝑖 could represent a point in time or a set of features at that time point and the 

embedding layer captures temporal features in a higher dimensional space. 

Since the Transformer model lacks any inherent sense of sequence order (due to the absence 

of recurrent structures), positional encodings are added to give the model information about 

the position of each item in the sequence. 

                 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 (𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

100002𝑖 𝑑⁄
)                 … [16]  

                      𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 (𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

100002𝑖 𝑑⁄
)             … [17] 

where, 

𝑝𝑜𝑠: The position of the item in the sequence 

𝑖: The dimension index of the positional encoding 

𝑑: The dimensionality of the embeddings 

The positional encoding for each dimension is calculated using sinusoidal functions, with the 

sine function applied to even indices and the cosine function to odd indices. 

These equations generate a unique positional encoding for each position in the sequence. The 

use of sinusoidal functions helps the model to easily learn to attend by relative positions. The 

positional encodings are added to the embedding vectors, ensuring that each position in the 

sequence is distinguishable and the sequential nature of the data is preserved. 

       𝑋′ = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋) + 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔                   … [18] 

This combination of embeddings and positional encodings forms the initial representation of 

the input data that is fed into the subsequent layers of the Transformer model. 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 229 - 
 

4.1.2. The Encoder Block: 

The encoder module is made up of 𝑁 = 6 encoder layers that are stacked on top of each other. 

Each encoder layer comprises of two sublayers - a multi-head self-attention layer and a 

feedforward layer, which are connected by a residual link and a normalization layer. The 

residual connection is a common technique used in deep neural network training to improve 

learning and stability. Additionally, layer normalization is frequently used in neural networks 

for analysing sequential data and to aid in training convergence. The feedforward layer consists 

of two linear layers with ReLU activation functions. The output of one encoder block becomes 

the input to the next encoder block. To form the input for the initial encoder block, the word 

embeddings and position-encoding vectors are added together (Ahmed et al., 2023). In order 

to facilitate the residual connections, both the embedding layers and the sub-layers of the model 

produce outputs with a dimension of 𝑑𝑚𝑜𝑑𝑒𝑙 = 512. 

4.1.3. The Decoder Block: 

The decoder component is comprised of 𝑁 = 6 identical layers of stacked decoders, each of 

which contains the same layers and operations as its corresponding encoder block. However, 

unlike the encoder, the decoder receives two inputs: one from the previous decoder and one 

from the latest encoder. The decoder consists of three sublayers: (1) multi-headed self-

attention, (2) encoder/decoder attention layer and (3) feedforward layer, along with residual 

connections and layer normalization operations. The final output of the encoder is used to 

create a set of key-value vectors in the attention layer of the encoder/decoder. The query vector 

is generated using the output of the preceding multi-head self-attention layer before the 

encoder/decoder layer. 

4.2.Self – Attention: 

The primary distinction between the attention mechanism and conventional RNN or LSTM 

models lies in the attention mechanism's ability to focus directly on specific segments of a 

sequence rather than treating them uniformly based on their order. This unique characteristic 

enables the model to capture information from early positions in the sequence, enhancing its 

comprehension of the overall context. 

The Transformer architecture utilizes dot products to establish connections between various 

input segments, with location information added to those segments. A single sequence of n 
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words or data points {𝑥𝑖}𝑖=1
𝑛 ,  where 𝑥 ∈ 𝑅𝑑  is represented. The index i corresponds to the 

position of the vector 𝑥𝑖, indicating the position of the word in the original sentence or phrase. 

The self-attention mechanism involves computing a weighted dot product between these input 

vectors 𝑥𝑖 . The self-attention process has two steps. Firstly, normalized dot products are 

calculated between each input vector in the given input sequence. The normalization is done 

using the softmax operator, which scales the set of numbers to ensure that they add up to 1. 

The resulting normalized correlations are then calculated between a single input segment 𝑥𝑖 

and all other segments 𝑗 = 1,… , 𝑛 

𝑤𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖
𝑇𝑥𝑗) =

𝑒𝑥𝑖
𝑇𝑥𝑗

∑ 𝑒𝑥𝑖
𝑇𝑥𝑗

𝑗

                           … [19] 

where, ∑ 𝑤𝑖𝑗 = 1
𝑛
𝑗=1  and 1 ≤ 𝑖, 𝑗 ≤ 𝑛. 

In the second step, for a specific input segment 𝑥𝑖  a new representation 𝑧𝑖   is obtained by 

computing a weighted sum of all input segments {𝑥𝑖}𝑗=1
𝑛 . 

𝑧𝑖 =∑𝑤𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ,   ∀   1 ≤ 𝑖 ≤ 𝑛                                          … [20] 

It is important to note that the weights 𝑤𝑖𝑗  for any input segment 𝑥𝑖 sum up to 1. Consequently, 

the resulting representation vector 𝑧𝑖  is similar to the input vector 𝑥𝑗    that has the highest 

attention weight  𝑤𝑖𝑗 . The maximum attention weight is determined by the maximum 

correlation value obtained by the normalized inner product between 𝑥𝑖  and 𝑥𝑗 . It is worth 

mentioning that the position of  𝑧𝑖  in the sequence is the same as that of 𝑥𝑖 . The process 

continues for the subsequent output vector 𝑧𝑖 + 1 and a new set of weights corresponding 

to𝑥𝑖 + 1  is computed and utilized.  

4.2.1. Linearly Weighting Input Using Query, Key and Value: 

To perform self-attention in Transformers, the model first creates three vectors (query q, key k 

and value v) from the input sequence {𝑥𝑖}𝑖=1
𝑛 . These vectors are obtained by linearly combining 

the input features and they have different sizes (𝒒 ∈ ℝ𝑠1, 𝒌 ∈ ℝ𝑠1 and 𝒗 ∈ ℝ𝑠). 
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After applying linear transformations to the input sequence {𝑥𝑖}𝑖=1
𝑛 , the Transformer generates 

three vectors (query, key and value), each with a size of 𝑠1 = 𝑠 = 𝑑. The input sequence has n 

elements, which means that the Transformer produces n query vectors, n key vectors and n 

value vectors (Ahmed et al., 2023). 

To obtain the query 𝑞𝑖, key 𝑘𝑖 and value 𝑣𝑖 vectors from the input 𝑥𝑖, the Transformer applies 

linear transformations to the input 𝑥𝑖  using three sets of learnable weights: 

𝑞𝑖 = 𝑊𝑞𝑥𝑖, 𝑘𝑖 = 𝑊𝑘𝑥𝑖 and 𝑣𝑖 = 𝑊𝑣𝑥𝑖                                              … [21] 

where 𝑊𝑞 and 𝑊𝑘 ∈ ℝ
𝑠1×𝑑  , 𝑊𝑣 ∈ ℝ

𝑠×𝑑, depict learnable weight matrices. The output vectors 

{𝑧𝑖}𝑖=1
𝑛  are given by, 

𝑧𝑖 =∑𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑖
𝑇𝑘𝑗)𝑣𝑗

𝑗

                                                  … [22] 

In the self-attention mechanism of Transformers, the relevance of a value vector 𝑣𝑖 to a query 

vector 𝑞𝑖 is determined by its correlation with a key vector 𝑘𝑗  at a different location 𝑗. The 

strength of this correlation is reflected in the dot product of 𝑞𝑖 and 𝑘𝑗, which tends to increase 

with the sizes of the corresponding vectors. However, since the softmax function used to 

calculate attention weights is sensitive to large values, the dot product is scaled down by the 

square root of the dimension 𝑑𝑞 = 64. of the query and key vectors to avoid instability in the 

attention weights. 

𝑧𝑖 =∑𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑞𝑖
𝑇𝑘𝑗

√𝑑𝑞
)𝑣𝑗

𝑗

                                                   … [23] 

When represented in matrix form, the self-attention operation in Transformers can be expressed 

as follows: 

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉                                              … [24] 

where 𝑄 and 𝐾 ∈ ℝ𝑠1×𝑛 and 𝑉 ∈ ℝ𝑠×𝑛, 𝑍 ∈ ℝ𝑠×𝑛 and 𝑇 depicts the transpose mechanism. 
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4.3.Multi-Head Self-Attention 

The input data 𝑋 in Transformers may contain correlations that can be leveraged at multiple 

layers for effective learning. To achieve this, multiple self-attention heads can be used in 

parallel on the same input, each employing unique weight matrices 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣, to extract 

distinct correlation values between the input data. In Transformers, each self-attention head is 

constructed using a unique set of weight matrices for query, key and value vectors. By using 

multiple heads, the model can evaluate its self-perception on the input sequence in parallel, 

with each head computing its own attention scores independently (Zeng et al., 2021). The 

concept of employing multiple self-attention heads in Transformers is analogous to the use of 

multiple kernels in Convolutional Neural Networks (CNNs). In CNNs, each kernel is 

responsible for learning a distinct representation or property at each level of the network. 

Similarly, in Transformers, each head is designed to extract unique correlation information 

from the input data, contributing to a more comprehensive and effective learning process. 

4.4.Masking in Self-Attention  

In the training phase of Transformers, a multi-headed self-attention layer in the decoder masks 

portions of the target input to prevent the model from using future data points during the self-

attention process. This ensures that the decoder only processes previously predicted data and 

does not try to anticipate future inputs. During training, the decoder does not receive the 

model's projected output; instead, it uses the actual targets to drive learning. In the testing 

phase, the expected words in the sequence are fed back to the decoder after passing through 

the word embedding layer and position-coding vector. 

4.5.Residual Connections 

The use of residual connections in neural networks enables the gradient to flow directly from 

the input to the output through bypasses. In Transformers, these connections are employed to 

stabilize the training process, reduce the risk of vanishing gradients in deep neural networks, 

enhance the model's generalization and facilitate efficient learning. Residual connections are 

incorporated into both the encoder and decoder layers of the Transformer model. The output 

of each sub-layer (self-attention or feed-forward) is added to its input (residual connection) 

before being passed to the next layer 

                                𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥) + 𝑥                                                 … [25] 
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4.6.Layer normalization 

Layer normalization is a neural network technique that standardizes the distribution of 

intermediary layers to facilitate gradient smoothing during training, resulting in quicker 

convergence and better generalization to new data. This method is commonly utilized to 

improve the performance of deep neural networks. 

                            𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥) = 𝛾.
𝑥−𝜇

𝜎
+ 𝛽                                                … [26] 

where, 

𝜇 and 𝜎 are the mean and standard deviation of the features 

𝛾 and 𝛽 are learnable parameters 

4.7.Feed-forward Network 

The feed-forward network in the Transformer model, which contain around two-thirds of its 

parameters, have received less attention. These layers utilize a basic feedforward neural 

network to convert the attention vector into a format that can be processed by subsequent 

encoding or decoding layers. In contrast to RNNs, the feedforward network processes each 

attention vector independently and these vectors are not dependent on each other (Geva et al., 

2020). This parallelization allows for all words to be sent simultaneously to the encoder block 

and encoded at the same time, resulting in improved efficiency. 

                          𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2                                       … [27] 

where, 

𝑊1 and 𝑊2 are weight matrices and 𝑏1 and 𝑏2 are bias vectors 

4.8.Linear layer 

To augment the dimensionality of vectors, a linear layer is employed, which performs matrix 

multiplication of the input vectors with a weight matrix, resulting in an output with a higher 

number of dimensions. When dealing with machine translation, this layer is used to increase 

the dimensionality of the encoded vectors to match the number of words in the translated output 

in the target language. 
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                               𝑌 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 ∗ 𝑊 + 𝑏                                               … [28]  

where, 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡: The output from the final decoder block 

𝑊: Weight matrix of the linear layer 

𝑏: Bias vector 

4.9.Softmax layer 

After passing through the linear layer, the output undergoes a softmax activation function, 

which transforms the input into a probability distribution that is easy to interpret. The softmax 

layer outputs a probability distribution over the vocabulary, from which the most probable 

token is selected during inference. The purpose of the softmax function is to normalize the 

results of the linear layer, making them all positive and adding up to 1 (Tang and Matteson). 

                                        𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
                                                     … [29] 

where, 

𝑧𝑖: The 𝑖𝑡ℎ element of the output vector from the linear layer 

𝑒𝑧𝑖: The exponential function applied to 𝑧𝑖 

∑ 𝑒𝑧𝑗𝑗 : The sum of the exponentials of all elements of all elements in the output vector 

4.10. The Output  

Transformers are a class of neural networks that are primarily used for natural language 

processing tasks, such as machine translation. They consist of two primary components: an 

encoder and a decoder, which are made up of multiple interconnected layers of nodes. The 

encoder processes the input data, while the decoder generates the output data. To train the 

model, an optimization technique such as Adam and a loss function like mean squared error 

(MSE) are typically used. By employing self-attention mechanisms, the Transformer model 

can effectively model sequential data, allowing it to capture complex dependencies of varying 

lengths in TS data (Wu et al., 2020). The Transformer model's versatility is enhanced by its 

ability to be applied to a broad range of nonlinear dynamical systems and its flexibility to 
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handle both univariate and multivariate TS data with minimal changes to the model. 

Furthermore, due to its parallel processing capability, the Transformer model can efficiently 

handle input data and achieve faster and more effective training than other sequence models 

such as RNNs, LSTMs and GRUs. 

Question: Does Time Series Forecasting Use Both Encoder and Decoder in 

Transformers? 

Use Cases Encoder Decoder Explanation 

Univariate forecasting (e.g., 

rainfall prediction) 

 Yes Often 

skipped or 

simplified 

Only encoder used to learn from 

the input sequence. Decoder is 

often omitted or reduced to a 

projection head. 

Multivariate forecasting with 

long horizon (e.g., NDVI + 

rainfall → forecast 7 days) 

Yes  Yes Full encoder–decoder setup 

helps model complex input-

output mappings 

Sequence-to-sequence tasks 

(e.g., demand translation, 

data imputation, anomaly 

recovery) 

Yes Yes True seq2seq structure needed 

Classification of time series 

(e.g., crop stress or drought 

label) 

 Yes No decoder Only encoder needed to learn 

features for classification 

 

Insights: In agricultural time series forecasting (e.g., predicting temperature, NDVI, 

evapotranspiration for next 7 days): 

• If it’s multi-variate, long-horizon, or multi-output, you’ll benefit from an encoder–decoder 

Transformer. 

• If it’s single-step forecast, univariate or simple regression, a well-designed encoder-only 

Transformer is sufficient (and faster). 
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5. One dimensional Convolutional Neural Network (1d-CNN)  

1d-CNN is a formidable tool in TS analysis, showcasing remarkable success in recognizing 

temporal patterns. The fundamental architecture involves convolutional layers, sub-sampling 

layers and fully-connected layers, stacked together for efficient feature extraction and 

classification in TS data. 

In the convolutional layer, nodes receive inputs from adjacent nodes in the preceding layer, 

mimicking the temporal dependencies found in sequential data. Employing shared local 

weights, this layer reduces memory usage and improves the network’s capability for capturing 

the intricate time-dependent patterns: 

𝑍𝑡 = 𝜎(𝑊.𝑋𝑡 + 𝑏)                                             … [30] 

Sub-sampling layers which incorporate non-linear down-sampling, aiding in reducing the 

dimensionality of temporal data while enhancing the network’s efficiency in learning 

sequential features: 

𝑌𝑡 = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑍𝑡)                                             … [31] 

In the final fully-connected layer, analogous to conventional neural networks, a comprehensive 

matrix calculation occurs. This facilitates reasoning and generates the model’s output based on 

the extracted temporal features, crucial for forecasting financial prices: 

�̂�𝑡 = 𝑊𝑜𝑢𝑡𝑝𝑢𝑡. 𝐴𝑡 + 𝑏𝑜𝑢𝑡𝑝𝑢𝑡                             … [32] 

During training, the CNN optimizes model parameters to minimize the error between predicted 

and actual output values in a TS, utilizing gradient-based optimization using backpropagation 

to efficiently capture temporal dependencies: 

𝐿𝑡 =
1

2
∑(𝑦𝑡,𝑖 − �̂�𝑡,𝑖)

2

𝑖

                              … [33] 

In essence, the integration of convolutional, sub-sampling and fully connected layers equips 

CNNs to effectively discern temporal patterns and features in TS data, establishing them as a 

robust tool for various applications in TS analysis (Fig. 3.15). 
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Figure 8: Convolutional Neural Network (1D-CNN) architecture (Nayak et al., 2024c) 

CNN model Illustration for Image classification 

Example: Mango Fruit Image Classification (Healthy vs Spongy)  

Assume input image: 64×64×3 (RGB leaf image) 

Class 0: Healthy fruit 

Class 1: Spongy Fruit 
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Figure 9: CNN pipeline for Mango Image Fruit classification (Kiran et al. 2024) 

Step-by-step CNN pipeline: 

1. Convolution layer with 32 filters (3x3x3) → output 62x62x32 

2. ReLU activation 

3. Max pooling (2x2) → output 31x31x32 

4. Flatten → vector of size 3072 

5. Fully connected layer → logits 

6. Softmax → probabilities [0.8, 0.2] 

7. Output class: Healthy Fruit (80% confidence) 
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Supplementary Section 

S1: Abbreviations and Acronyms in Deep Learning 

Acronym Full Form 

DL Deep Learning 

ML Machine Learning 

AI Artificial Intelligence 

ANN Artificial Neural Network 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 

GRU Gated Recurrent Unit 

CNN Convolutional Neural Network 

FC Fully Connected (Layer) 

TS Time Series 

MSE Mean Squared Error 

MAE Mean Absolute Error 

ReLU Rectified Linear Unit 

SGD Stochastic Gradient Descent 

CE Cross-Entropy 

BPTT Backpropagation Through Time 

POS Part-of-Speech 

QKV Query, Key, Value (used in attention) 

PE Positional Encoding 

d_model Embedding vector dimension in Transformers 

FFN Feed-Forward Network 

NLP Natural Language Processing 

NDVI Normalized Difference Vegetation Index 

ET Evapotranspiration 

PDS Public Distribution System (in agriculture) 

Adam Adaptive Moment Estimation 
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S.2. Hyperparameters in Deep Learning 

Hyperparameters are external configurations of the model set prior to training and have a 

significant influence on the performance of deep learning models. Unlike model parameters 

(weights and biases), Hyperparameters are not learned from the data but must be tuned 

manually or using automated methods (like grid search or Bayesian optimization). 

Table S2: List of Common Hyperparameters 

Hyperparameter Description 

Learning Rate (η) 
Controls how much weights are updated 

during backpropagation. 

Batch Size 
Number of samples processed before model 

is updated. 

Epochs 
Full iterations over the entire training 

dataset. 

Optimizer 
Algorithm used to update weights (e.g., 

SGD, Adam, RMSProp). 

Loss Function 
Objective minimized during training (e.g., 

MSE for regression, CE for class). 

Activation Function 
Function applied to neuron outputs (e.g., 

ReLU, Sigmoid, Tanh). 

Dropout Rate 
Fraction of neurons randomly ignored to 

prevent overfitting. 

Number of Layers Number of hidden layers in the network. 

Number of Neurons Number of units per hidden layer. 

Weight Initialization 
Method for initializing weights (e.g., 

Xavier, He, Random Normal). 

Early Stopping 
Technique to halt training once validation 

loss stops improving. 

Regularization (L1/L2) 
Penalties added to loss function to reduce 

overfitting. 

Window/Sequence Size 
Number of time steps considered in time 

series models like RNN/LSTM. 

Kernel Size (CNN) Size of filter in convolutional layers. 

Stride (CNN) 
Step size for moving the kernel/filter over 

the input. 

Pooling Size (CNN) 
Dimensions of the pooling operation (e.g., 

2×2 max pooling). 

Embedding Size 
Dimension of dense vector in NLP or time 

series input representation. 

Number of Heads (Transformer) 
Parallel attention mechanisms in multi-head 

attention. 
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d_model (Transformer) 
Dimensionality of input/output of 

Transformer layers. 

 

___________________ DL General Python code for TS forecasting__________ 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

from tensorflow import keras 

from tensorflow.keras import layers 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.model_selection import train_test_split 

import keras_tuner as kt 

import matplotlib.pyplot as plt 

 

# === Load and preprocess data === 

df = pd.read_csv("/content/Weekly_Dehradoon_Kalman.csv", parse_dates=['Date']) 

#df = df[['Date', 'Price']].dropna() 

df['Price'] = df['Price'].interpolate(method='linear')  # Linear interpolation 

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 

# ACF and PACF first 

plot_acf(df['Price'], lags=30) 

plot_pacf(df['Price'], lags=30) 

plt.show() 

 

# Normalize 

scaler = MinMaxScaler() 

df['Price'] = scaler.fit_transform(df[['Price']]) 

 

# Create sequences 

def create_sequences(data, seq_length=10): 

    xs, ys = [], [] 

    for i in range(len(data) - seq_length): 

        x = data[i:(i + seq_length)] 

        y = data[i + seq_length] 

        xs.append(x) 

        ys.append(y) 

    return np.array(xs), np.array(ys) 

 

seq_length = 10 

X, y = create_sequences(df['Price'].values, seq_length) 

 

# Train/test split 

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=False, test_size=0.2) 

X_train = X_train[..., np.newaxis] 

X_test = X_test[..., np.newaxis] 

model_type = 'gru'  # Change this as needed 

def build_model(hp): 

    model = keras.Sequential() 
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    if model_type == 'rnn': 

        model.add(layers.SimpleRNN(units=hp.Int("units", 32, 128, step=32), 

                                   return_sequences=False, 

                                   input_shape=(seq_length, 1))) 

    elif model_type == 'gru': 

        model.add(layers.GRU(units=hp.Int("units", 32, 128, step=32), 

                             return_sequences=False, 

                             input_shape=(seq_length, 1))) 

    elif model_type == 'lstm': 

        model.add(layers.LSTM(units=hp.Int("units", 32, 128, step=32), 

                              return_sequences=False, 

                              input_shape=(seq_length, 1))) 

    elif model_type == 'cnn': 

        model.add(layers.Conv1D(filters=hp.Int("filters", 32, 128, step=32), 

                                kernel_size=hp.Choice("kernel_size", [2, 3, 4]), 

                                activation='relu', 

                                input_shape=(seq_length, 1))) 

        model.add(layers.GlobalAveragePooling1D()) # Replaced MaxPooling1D and Flatten 

with GlobalAveragePooling1D 

 

    model.add(layers.Dense(1)) 

    model.compile(optimizer=keras.optimizers.Adam(hp.Choice("lr", [1e-2, 1e-3, 1e-4])), 

                  loss='mse', metrics=['mae']) 

    return model 

 

tuner = kt.RandomSearch( 

    build_model, 

    objective='val_loss', 

    max_trials=5, 

    executions_per_trial=1, 

    directory='tuning_results', 

    project_name=model_type 

) 

 

tuner.search(X_train, y_train, validation_split=0.2, epochs=30, verbose=1) 

best_model = tuner.get_best_models(1)[0] 

best_model.summary() 

 

preds = best_model.predict(X_test) 

preds_rescaled = scaler.inverse_transform(preds) 

y_test_rescaled = scaler.inverse_transform(y_test.reshape(-1, 1)) 

 

plt.plot(y_test_rescaled, label="True") 

plt.plot(preds_rescaled, label="Predicted") 

plt.title(f"{model_type.upper()} Forecasting") 

plt.legend() 

plt.show() 
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from sklearn.metrics import mean_squared_error, mean_absolute_error 

# Calculate metrics 

rmse = np.sqrt(mean_squared_error(y_test_rescaled, preds_rescaled)) 

mae = mean_absolute_error(y_test_rescaled, preds_rescaled) 

mape = np.mean(np.abs((y_test_rescaled - preds_rescaled) / y_test_rescaled)) * 100 

 

print(f"RMSE: {rmse:.3f}") 

print(f"MAE: {mae:.3f}") 

print(f"MAPE: {mape:.2f}%") 

 

___________________ Transformer General Python code for TS forecasting__________ 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

from tensorflow import keras 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import mean_squared_error, mean_absolute_error 

import matplotlib.pyplot as plt 

 

# Mock a sample version of the CSV for demonstration 

df = pd.read_csv("your_file.csv", parse_dates=['Date']) 

df['Price'] = df['Price'].interpolate(method='linear') 

 

# Normalize 

scaler = MinMaxScaler() 

df['Price'] = scaler.fit_transform(df[['Price']]) 

# Create sequences 

def create_sequences(data, seq_length=10): 

    xs, ys = [], [] 

    for i in range(len(data) - seq_length): 

        x = data[i:(i + seq_length)] 

        y = data[i + seq_length] 

        xs.append(x) 

        ys.append(y) 

    return np.array(xs), np.array(ys) 

seq_length = 10 

X, y = create_sequences(df['Price'].values, seq_length) 

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=False, test_size=0.2) 

X_train = X_train[..., np.newaxis] 

X_test = X_test[..., np.newaxis] 

 

# Transformer Block 

class TransformerBlock(keras.layers.Layer): 

    def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1): 

        super(TransformerBlock, self).__init__() 

        self.att = keras.layers.MultiHeadAttention(num_heads=num_heads, 

key_dim=embed_dim) 
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        self.ffn = keras.Sequential( 

            [keras.layers.Dense(ff_dim, activation="relu"), keras.layers.Dense(embed_dim)] 

        ) 

        self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6) 

        self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6) 

        self.dropout1 = keras.layers.Dropout(rate) 

        self.dropout2 = keras.layers.Dropout(rate) 

 

    def call(self, inputs, training=None): 

        attn_output = self.att(inputs, inputs) 

        attn_output = self.dropout1(attn_output, training=training) 

        out1 = self.layernorm1(inputs + attn_output) 

        ffn_output = self.ffn(out1) 

        ffn_output = self.dropout2(ffn_output, training=training) 

        return self.layernorm2(out1 + ffn_output) 

# Positional Encoding 

class PositionalEncoding(keras.layers.Layer): 

    def __init__(self, sequence_length, d_model): 

        super(PositionalEncoding, self).__init__() 

        self.pos_encoding = self.positional_encoding(sequence_length, d_model) 

 

   def get_angles(self, pos, i, d_model): 

        angles = pos / np.power(10000, (2 * (i//2)) / np.float32(d_model)) 

        return angles 

    def positional_encoding(self, position, d_model): 

        angle_rads = self.get_angles(np.arange(position)[:, np.newaxis], 

                                     np.arange(d_model)[np.newaxis, :], 

                                     d_model) 

        angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2]) 

        angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2]) 

        return tf.cast(angle_rads[np.newaxis, ...], dtype=tf.float32) 

    def call(self, inputs): 

        return inputs + self.pos_encoding[:, :tf.shape(inputs)[1], :] 

 

# Build Transformer 

def build_transformer_model(seq_len, d_model=64, num_heads=2, ff_dim=128): 

    inputs = keras.Input(shape=(seq_len, 1)) 

    x = keras.layers.Dense(d_model)(inputs) 

    x = PositionalEncoding(seq_len, d_model)(x) 

    x = TransformerBlock(d_model, num_heads, ff_dim)(x, training=None) 

    x = keras.layers.GlobalAveragePooling1D()(x) 

    x = keras.layers.Dense(64, activation="relu")(x) 

    outputs = keras.layers.Dense(1)(x) 

 

    model = keras.Model(inputs=inputs, outputs=outputs) 

    model.compile(optimizer="adam", loss="mse", metrics=["mae"]) 

    return model 
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# Train the model 

transformer_model = build_transformer_model(X_train.shape[1]) 

history = transformer_model.fit(X_train, y_train, validation_split=0.2, epochs=30, 

verbose=0) 

 

# Predictions and evaluation 

preds = transformer_model.predict(X_test) 

preds_rescaled = scaler.inverse_transform(preds) 

y_test_rescaled = scaler.inverse_transform(y_test.reshape(-1, 1)) 

 

rmse = np.sqrt(mean_squared_error(y_test_rescaled, preds_rescaled)) 

mae = mean_absolute_error(y_test_rescaled, preds_rescaled) 

mape = np.mean(np.abs((y_test_rescaled - preds_rescaled) / y_test_rescaled)) * 100 

 

print(f"RMSE: {rmse:.3f}") 

print(f"MAE: {mae:.3f}") 

print(f"MAPE: {mape:.2f}%") 

# Visualization 

preds = transformer_model.predict(X_test) 

preds_rescaled = scaler.inverse_transform(preds) 

y_test_rescaled = scaler.inverse_transform(y_test.reshape(-1, 1)) 

 

plt.plot(y_test_rescaled, label="True") 

plt.plot(preds_rescaled, label="Predicted") 

#plt.title(f"{model_type.upper()} Forecasting") 

plt.legend() 

plt.show() 
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Introduction 

Time series refer to a set of observations recorded at regular intervals over time. Time series 

analysis (TSA) is an essential statistical tool used to understand the temporal dynamics of a 

variable, capture its historical behaviour, and project future outcomes. It is widely applied 

across disciplines to model and forecast time-dependent phenomena, such as stock prices, 

energy demand, rainfall, or crop yields. Among the classical approaches, the Box-Jenkins 

methodology for Autoregressive Moving Average (ARMA) modeling, introduced by Box and 

Jenkins (1970), is one of the most widely adopted techniques. Its structured three-step approach 

model identification, parameter estimation, and diagnostic checking—has made it the 

foundation for many forecasting applications involving linear time series data. 

In the context of abiotic stress management in agriculture, time series models are critical for 

forecasting weather extremes and environmental conditions such as temperature, rainfall, 

drought indices, evapotranspiration, and soil moisture. These variables often exhibit strong 

seasonal trends and autocorrelations, making time series modeling a reliable method for 

predicting stress-prone periods. For instance, predicting low rainfall months ahead of the 

monsoon season enables proactive water conservation measures, drought preparedness, and the 

selection of suitable crop varieties. 

By enabling the quantitative forecasting of climatic and environmental factors, TSA supports 

better risk management, resource allocation, and timely agricultural interventions. Moreover, 

advanced versions like ARIMA, SARIMA, and hybrid machine learning–statistical models 

provide flexibility to handle non-stationary and nonlinear behaviors common in abiotic stress 

datasets. Thus, time series modeling is not just a forecasting tool—it is a vital component in 

building climate-resilient agriculture that can anticipate and adapt to the challenges posed by 

environmental variability and stressors. A major limitation of traditional linear time series 

models, particularly the Autoregressive Integrated Moving Average (ARIMA) model, lies in 

their assumption of linearity. As a consequence, these models are inherently incapable of 
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capturing nonlinear patterns present in many real-world time series datasets. However, in 

practice, time series often exhibit a combination of both linear and nonlinear structures. Under 

such circumstances, relying solely on ARIMA or machine learning models like Artificial 

Neural Networks (ANN) and Support Vector Machines (SVM) may prove inadequate for 

achieving satisfactory forecasting performance. To address this issue, hybrid modeling 

strategies have been developed, which aim to integrate the strengths of different approaches. 

Empirical studies (Zhang 2003; Jha and Sinha 2014; Chen and Wang 2007; Kumar and 

Prajneshu 2015; Ray et al. 2016) have shown that such hybrid models can significantly enhance 

forecasting accuracy by effectively modeling both linear and nonlinear components.  

Autoregressive Integrated Moving Average (ARIMA) model 

One of the most widely adopted classical models for time series analysis is the ARIMA 

model. Its popularity stems from its solid statistical foundation and the structured model 

building procedure proposed by Box and Jenkins (1970). Since many time series are non-

stationary, the differencing operator d is applied to transform the series into a stationary form. 

Once the series becomes stationary through differencing, the general ARIMA model can be 

specified as ARIMA(p,d,q), where p is the order of the autoregressive part, d is the degree of 

differencing, and q is the order of the moving average part. A time series process YtY_tYt is 

said to follow an integrated ARMA process if ∆𝑌𝑡 = (1 − 𝐵)
𝑑𝜀𝑡, where 𝐵 is the backward shift 

operator and 𝜀𝑡is a white noise error term. The ARIMA model is mathematically expressed as: 

 ∅(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡                                          (1) 

Where, 𝜀𝑡~𝑊𝑁 (0, 𝜎
2)  and WN is the white noise. The Box-Jenkins ARIMA model 

building consists of three steps viz., identification, estimation and diagnostic checking. 

Artificial Neural Network for Time series 

In contrast to linear models, artificial neural networks provide a flexible framework 

capable of approximating complex nonlinear relationships within time series data. For time-

dependent data, the neural network architecture is adapted accordingly, resulting in what is 

known as a Time Delay Neural Network (TDNN). In such networks, time lags or delayed 

observations of the series are included as input features, allowing the model to learn temporal 

dependencies. A static neural network structure, such as the multilayer perceptron, is extended 
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with dynamic properties by incorporating these time lags into its architecture (Haykin 1999). 

Thus, a common method for constructing a neural network for time series forecasting involves 

feeding past values of the series into the input layer. The output 𝑌𝑡 of the TDNN is then a 

function of these time-lagged inputs, transformed through the layers of the network using 

nonlinear activation functions. This architecture enables the network to capture intricate 

nonlinear relationships that are often missed by conventional linear models. 

𝑌𝑡 = 𝛼0 + ∑ 𝛼𝑗
𝑞
𝑗=1 𝑔(𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑌𝑡−𝑝

𝑝
𝑖=1 ) + 𝜀𝑡                                           (2)                                                             

where, 𝛼𝑗(𝑗 = 0,1,2, … , 𝑞)  and 𝛽𝑖𝑗(𝑖 = 0,1,2, … , 𝑝, 𝑗 = 0,1,2, . . . , 𝑞)  are the model 

parameters, also called as the connection weights, p is the number of input nodes, q is the 

number of hidden nodes and 𝑔 is the activation function. The architecture of neural network is 

represented in figure 1.  

 

Fig.1: Artificial Neural Network Structure 

Support Vector Machine for Time Series  

Support Vector Machine (SVM) is a supervised machine learning approach that was 

initially developed for solving linear classification problems. In 1997, Vapnik extended the 

application of SVM to regression tasks by introducing the ε-insensitive loss function, thereby 

giving rise to the Support Vector Regression (SVR) framework (Vapnik, 1997). This 

innovation allowed the method to handle regression problems effectively, particularly those 

involving nonlinear relationships, and led to the development of the Nonlinear Support Vector 

Regression (NLSVR) model. The core idea behind NLSVR is to project the original input data 

into a higher-dimensional feature space where linear regression can be performed, thus 

capturing complex, nonlinear patterns in the data. To formalize this approach, let us consider a 

dataset represented by the vector 𝑍 = {𝑥𝑖 𝑦𝑖}𝑖=1
𝑁  where 𝑥𝑖 ∈ 𝑅

𝑛  denotes the input feature 

vector, 𝑦𝑖 is the corresponding scalar output, and N is the total number of observations in the 

dataset. In NLSVR, a regression function is constructed in such a way that it approximates the 
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relationship between inputs and outputs in the transformed feature space with minimal error, 

as defined by the ε-insensitive loss function. The general form of the nonlinear support vector 

regression estimation function can be expressed as follows: 

𝑓(𝑥) = 𝑊𝑇𝜙 (𝑥) + 𝑏                                                      (3) 

where ϕ(x) is a nonlinear mapping from the input space to a high-dimensional feature 

space, w is the weight vector, b is the bias term, and ⟨⋅,⋅⟩ denotes the dot product in the feature 

space. The goal of NLSVR is to find the optimal parameters w and b that minimize a 

regularized risk function while ensuring that the prediction error for each data point remains 

within a pre-defined ε-tube around the true value. 

where 𝜙(.): 𝑅𝑛→ 𝑅𝑛ℎ is a nonlinear mapping function which map the original input 

space into a higher dimensional feature space vector. W∈𝑅𝑛ℎ is weight vector, 𝑏 is bias term 

and superscript T denotes the transpose. 

BDS (Brock-Dechert-Scheinkman) Test for testing Nonlinearity  

BDS (Brock et al. 1996), test utilizes the concept of spatial correlation from chaos 

theory. The computational procedure is given as follows 

v) Let the considered time series is 

 
  1 2 3[ , , ,..., ]i Nx x x x x=                                                                   (4) 

vi) The next step is to specify a value of m (embedding dimension), embed the time series 

into m dimensional vectors, by taking each m successive points in the series. This 

transforms the series of scalars into a series of vectors with overlapping entries 

1 1 2

2 2 3 1

1

( , ,..., )

( , ,..., )

.

.

.

( , ,..., )

m

m

m

m

m

N m N m N m N

x x x x

x x x x

x x x x

+

− − − +

=

=

=                                                         (5) 

vii) In the third step correlation integral is computed, which measures the spatial correlation 

among the points, by adding the number of pairs of points ( i, j), where 1≤ i ≤ N and 1≤ 
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j≤N , in the m-dimensional space which are “close”  in the sense that the points are 

within a radius or tolerance  of each other. 

 
, , ;

1

( 1)
m i j

i jm m

C I
N N

 


=
−
                               (6) 

 Where Ii,j;= 1 if m m

i jx x − 
    

 = 0 otherwise 

viii) If the time series is i.i.d. then C ,m [C ,1]
m

 

ix) The BDS test statistics is as follows 
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The choice of m and  depends on number of data. The null hypothesis is data are 

independently and identically distributed (i.i.d.) against the alternative hypothesis the data are 

not i.i.d. this implies that the time series is non-linearly dependent. BDS test is a two-tailed test; 

the null hypothesis should be rejected if the BDS test statistic is greater than or less than the 

critical values.  

The Hybrid Methodology 

The hybrid method considers the time series 𝑦𝑡 as a combination of both linear and non-

linear components. This approach follows the Zhang’s (2003) hybrid approach, accordingly 

the relationship between linear and nonlinear components can be expressed as follows 

𝑦𝑡 = 𝐿𝑡 + 𝑁𝑡                                                                                                                   (8) 

Let 𝐿𝑡 and 𝑁𝑡 represent the linear and nonlinear components of a given time series, 

respectively. In the present study, the linear component is modeled using the Autoregressive 

Integrated Moving Average (ARIMA) model, while the nonlinear component is captured 
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through Time Delay Neural Network (TDNN) and Nonlinear Support Vector Regression 

(NLSVR). The proposed hybrid methodology comprises three sequential steps. 

In the first step, an ARIMA model is applied to capture and forecast the linear structure 

of the series. Let the linear forecast obtained from the ARIMA model be denoted by �̂�𝑡. In the 

second step, residuals are computed as 𝑒𝑡 =  𝑦𝑡 −�̂�𝑡  where  𝑦𝑡 represents the original series. 

These residuals are then tested for nonlinearity using the BDS test (Brock, 1996). If the test 

confirms the presence of nonlinearity, the residual series is modeled using TDNN and NLSVR. 

In the final step, the forecasts of the linear and nonlinear components are combined to obtain 

the aggregate forecast, thereby capturing both the linear and nonlinear dynamics inherent in 

the original time series. 

ˆ ˆˆ
t t ty L N= +

                                                                                                                 (9)  

Where, �̂�and �̂� represents the predicted linear and nonlinear component respectively. 

The graphical representation of hybrid methodology is expressed in figure 2 and 3. Finally, the 

performance of the models under consideration are compared using MSE (Mean Square Error), 

RMSE (Mean Square Error) and by MAPE (Mean Absolute Percentage Error).  

 

Fig. 2: Schematic representation of ARIMA-TDNN hybrid methodology 

 

Fig. 3: Schematic representation of ARIMA-NLSVR hybrid methodology 

This hybrid methodology approach can be further extended by using some other machine 

learning techniques for varying autoregressive and moving average orders so that practical 

validity of the model can be well established. The validity of hybrid models can be generalized 

by extending this approach to many agricultural real life data sets. 
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Illustration 

Yearly data on mango yield (measured in MT/ha) for the state of Karnataka was obtained from 

the official database of the National Horticulture Board (NHB) and the website 

http://www.indiastat.com. To carry out the forecasting exercise, data spanning the period from 

1980 to 2014 were considered. The dataset was split such that the observations from 1980 to 

2011 were used for model development, while the data from 2012 to 2014 served as the 

validation set to evaluate the out-of-sample forecasting accuracy of the selected models. A time 

series plot of the mango yield in Karnataka over the years is shown in Fig. 4, which provides a 

visual representation of the trend and variability in the yield over time. To model the yield 

dynamics, an Autoregressive Integrated Moving Average (ARIMA) model was employed. 

Initial diagnostic analysis revealed that the original yield series was non-stationary, 

necessitating the application of first-order differencing to achieve stationarity. The appropriate 

ARIMA model was then selected based on the inspection of the Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF) plots. The model that best fitted the 

training data was found to be ARIMA(0,1,1). The parameters of the selected ARIMA model 

were estimated using the maximum likelihood estimation (MLE) method, and the 

corresponding estimates are reported in Table 1. Additionally, the model’s predictive 

performance was assessed using both the training dataset and the validation dataset, with the 

results summarized in Tables 5 and 6, respectively. 

 

Fig. 4: Time series plot of mango yield time series 

 

Table 1:  Parameter estimation of ARIMA (0 1 1) for Mango Yield time series. 

 

Parameter Estimate 
Standard 

Error 
t Value Approx. Pr > |t| Lag 

P(Resi.) at 6 Lag 

Constant  0.033 0.038 0.87 0.382 0 0.240 

MA 1 0.581 0.161 3.64 0.003 1 

 

 

The TDNN and NLSVR models were fitted to mango yield time series of Karnataka and the 

model specifications are given in table 2 and 3. Further the model performance in training set 

and testing data set is given in tables 5 and 6.  
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After fitting the ARIMA model, the residuals were subjected to the Brock-Dechert-Scheinkman 

(BDS) test to assess the presence of nonlinearity. The results of the BDS test, presented in Table 

4, indicate that the residuals obtained from the ARIMA model are nonlinear and statistically 

significant. As outlined in the hybrid modeling framework, once the residual series is identified 

as nonlinear, it can be further modeled using nonlinear approaches to capture the remaining 

structure. In this study, the nonlinear models employed for modeling and forecasting the 

ARIMA residuals include the Time Delay Neural Network (TDNN) and the Nonlinear Support 

Vector Regression (NLSVR) models. Following the confirmation of nonlinearity in the ARIMA 

residuals, both TDNN and NLSVR were independently fitted to the residual series. The 

resulting forecasts from these models were then added to the forecasts obtained from the original 

ARIMA model, thereby forming two hybrid models: ARIMA-TDNN and ARIMA-NLSVR. 

The combined hybrid forecasts are expected to capture both the linear and nonlinear components 

of the yield time series. The forecasting performance of these hybrid models was evaluated for 

both the training period and the out-of-sample testing period, and the results are summarized in 

Tables 5 and 6, respectively. 

 

Table 5: Comparison of forecasting performance of all models in training data set. 

 

Criteria ARIMA TDNN NLSVR 
ARIMA-

TDNN 

ARIMA-

NLSVR 

MAPE 3.83 2.89 2.81 1.98 1.73 

 

Table 6: Comparison of forecasting performance of all models in testing data set. 

 

Year Actual Forecast 
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ARIMA TDNN NLSVR 
ARIMA-

TDNN 

ARIMA-

NLSVR 

2012 10.84 11.75 9.68 10.71 10.12 10.59 

2013 10.04 11.15 10.14 10.73 10.62 10.44 

2014 9.93 8.67 10.37 9.25 10.01 10.12 

MAPE 10.71 5.37 4.97 4.40 2.73 

 

As described in the hybrid methodology section, hybrid models offer distinct advantages over 

individual models by effectively capturing both linear and nonlinear structures present in time 

series data. Based on the lowest Mean Absolute Percentage Error (MAPE) values observed for 

both the training (Table 5) and testing (Table 6) data sets, it is evident that the hybrid model 

combining ARIMA and Nonlinear Support Vector Regression (ARIMA-NLSVR) 

outperformed all other models considered in the study. Both hybrid models—ARIMA-TDNN 

and ARIMA-NLSVR—showed improved performance over the standalone models, namely 

ARIMA, TDNN, and NLSVR. Among these, the ARIMA-NLSVR model delivered the most 

accurate forecasting results. This enhanced performance can be attributed to the hybrid 

methodology’s ability to address both the linear and nonlinear components inherent in the 

mango yield time series of Karnataka. 

Conclusion 

The findings of this study highlight the superiority of hybrid time series modeling over single-

model approaches for forecasting agricultural yield data. Given that the mango yield time series 

exhibited both linear and nonlinear patterns, the hybrid models demonstrated better accuracy 

in capturing the underlying structure. In particular, the ARIMA-NLSVR model showed 

consistent and superior forecasting accuracy across both the training and testing periods. The 

results underscore the practical value of hybrid approaches in time series forecasting, and future 

extensions of this work could explore the integration of other advanced machine learning 

techniques or varied autoregressive and moving average model orders to further enhance the 

predictive performance and robustness of the forecasting framework.  

R codes to implement Hybrid TS models 

nrow(available.packages()) 

rm(list=ls()) 

install.packages() 

install.packages(c("forecast", "e1071", "tseries", "ggplot2", "fNonlinear", "lmtest")) 

library(forecast) 

library(e1071) 

library(tseries) 

library(ggplot2) 

library(tidyverse) 

library(fNonlinear) 

library(lmtest) 

g=read.table(file="rf.txt",header=T) 
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head(g) 

dim(g) 

Box.test(g$Rainfall) 

rf1=read.table(file="rf1.txt",header=T) 

head(rf1) 

ggplot(data = rf1, aes(x = Month, y = Rainfall) )+ geom_line(color = "#00AFBB", size = 1) + 

 labs(x = "Months", y = "Rainfall") + ggtitle("TS Plot of Monthly Rainfall Data") 

bdsTest(g$Rainfall, m = 3, eps = NULL, title = NULL, description = NULL) 

dim(g) 

a1=g$Rainfall[1:1416] 

a2=g$Rainfall[1417:1428] 

Box.test(a1) 

acf(a1) 

pacf(a1) 

############# ARIMA Fitting ######### 

m1=auto.arima(a1) 

coeftest(m1) 

accuracy(m1) 

Box.test(m1$residuals) 

fitted1=m1$fitted 

write.csv(as.data.frame(fitted1), file="ARIMA_Fitted.csv") 

f1=forecast(m1, h=12) 

f11=data.frame(f1) 

f12=f11$Point.Forecast 

mse11=abs(a2-f12)^2 

mse1=mean(mse11) 

rmse1=sqrt(mse1) 

rmse1 

write.csv(as.data.frame(f12), file="ARIMA_Forecasted.csv") 

 

################### ANN ########## 

m2=nnetar(a1,6, P=1, 10, repeats=25, xreg=NULL, lambda=NULL, model=NULL, 

subset=NULL, scale.inputs=TRUE,  maxit=150) 

m2 

accuracy(m2) 

fitted2=m2$fitted 

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv") 

Box.test(m2$residuals) 

f2=forecast(m2, h=12) 

f21=data.frame(f2) 

f22=f21$Point.Forecast 

mse21=abs(a2-f22)^2 

mse2=mean(mse21) 

rmse2=sqrt(mse2) 

rmse2 

write.csv(as.data.frame(f22), file="ANN_Forecasted.csv") 

m3=nnetar(a1) 

accuracy(m3) 
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m3 

fitted3=m3$fitted 

f3=forecast(m3, h=12) 

f31=data.frame(f3) 

f32=f31$Point.Forecast 

mse31=abs(a2-f32)^2 

mse3=mean(mse31) 

rmse3=sqrt(mse3) 

rmse3 

Box.test(m3$residuals) 

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv") 

write.csv(as.data.frame(f32), file="ANN_Forecasted.csv") 

 

################### SVR ########## 

X1=g$Rainfall[1:1416] 

Y1=g$Rainfall[2:1417] 

X2=g$Rainfall[1416:1427]  

Y2=g$Rainfall[1417:1428]  

m4=svm(X1,Y1,degree = 3,cost = 45.69, nu=0.5,tolerance = 0.00001,epsilon = 0.00001) 

summary(m4) 

fitted4 <- fitted(m4)   ## Fitted values   

mse41=abs(Y1-fitted4)^2 

mse4=mean(mse41) 

rmse4=sqrt(mse4) 

rmse4 

Box.test(m4$residuals) 

s3=predict(m4,X2) 

mse61=abs(Y2-s3)^2 

mse6=mean(mse61) 

rmse6=sqrt(mse6) 

rmse6 

############# ARIMA ########### 

##########Significance Comparison ########## 

########## For testing set ###### 

dm.test(m1$residuals, m2$residuals) 

dm.test(m1$residuals, m3$residuals) 

dm.test(m1$residuals, m4$residuals) 

######## You have to do it for testing set also ##### 

########### Hybrid Modeling ########## 

r1=m1$residuals 

bdsTest(r1, m = 3, eps = NULL, title = NULL, description = NULL) 

n1=nnetar(r1) 

n1f=n1$fitted 

c1=(m1$fitted)+n1f 

c11=c1[32:1416] 

a11=a1[32:1416] 

mse51=abs(a11-c11)^2 

mse5=mean(mse51) 
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rmse5=sqrt(mse5) 

rmse5 

############# Comparison########### 

accuracy(m1) 

accuracy(m2) 

rmse4 

rmse5 

################### Fitted Plots ########## 

rm(list=ls()) 

library(tidyverse) 

library(readxl) 

library(ggplot2) 

Data1<-as.data.frame(read_excel("Fitted_Plot.xlsx", col_names = TRUE,sheet = "data")) 

head(Data1) 

Date <- seq(as.Date("2020/1/06"), as.Date("2020/06/30"), "day") 

head(Data1) 

RF=Data1$RF 

Actual=Data1$Actual 

Model1=Data1$Model1 

Model2=Data1$Model2 

Model3=Data1$Model3 

Data2=data.frame(Date, RF, Actual,Model1, Model2, Model3) 

df <- Data2 %>% 

  select(Date, Actual, Model1, Model2, Model3) %>% 

  gather(key = "Models", value = "RF", -Date) 

tail(df) 

p1<-ggplot(df, aes(x = Date, y = RF)) + 

  geom_line(aes(color = Models), size = 1) + scale_x_date(date_labels = "%d/%b-%Y")+ 

labs(x = "Date", y = "RF")+ ggtitle("Actual v/s Fitted plot RF")+ 

  theme(plot.title = element_text(size = 11)) 

p1+geom_vline(xintercept = as.Date("2020-06-24"), color="blue4") 
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1. Introduction 

Prices of agricultural commodities play a vital role in producers' incentives to produce and 

consumers' economic access to food, leading to a usual dilemma for policy planners. Accurate 

forecasts of agricultural commodity prices reflecting cumulative information held by different 

economic agents can play a crucial role in marketing strategy and investment decisions and 

offer suggestions for agricultural policy planning.  However, the agricultural commodity 

market is influenced by several factors such as climate variability, including seasonality of 

production, the derived nature of demand, market imperfections, economic globalization, and 

a series of administrative regulations, making the price series extremely complex with 

nonlinearity, non-stationarity, and chaotic characteristics. All these complexities lead to the 

price prediction of agricultural commodities, an extremely challenging task. 

Extensive investigation of literatures confirms abundant studies trying to tackle and analyse 

the complexities of price series for better forecasting. The models used in those studies can be 

categorised under statistical models and artificial intelligence (AI) models. Statistical models 

employed for agricultural price forecasting include models like ARIMA (Box et al., 2017) and 

its constituent models. However, due to the pre-assumed linearity and fixed temporal constraint 

among data, these statistical models did not meet the expected accuracy in predicting such 

nonlinear and complex price series.  

Whereas AI models, with their great self-learning capabilities, have evolved as important and 

reliable means for the task. Various AI models being practiced for price forecasting include 

time-delay neural network (TDNN), wavelet neural network (WNN), support vector machine 

(SVM), extreme learning machine (ELM), etc. Although these techniques are established as 

effective measures for any time series prediction, AI techniques suffer from some limitations 

like problems of local minima, parameter sensitiveness, overfitting, the requirement of a large 

dataset for better training, etc. However, there is no simple, effective way to build and select a 

neural network. Thus a trial-and-error or cross-validation experiment is often adopted to find 
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the best model. There are several limitations with this keep-the-best (KTB) approach in 

choosing a neural network model. First, the best selected model may not be a true optimal 

model because of choice of different factors of a network may lead to choose an alternative 

model. Second, neural networks are data-driven methods, so the selected best model may 

overfit the specific sample data. 

 To overcome these drawbacks, the potential of combining several neural network models to 

form an ensemble for forecasting has been examined. According to Hibon and Evgeniou 

(2005), an ensemble is more effective and stable than a single model (KTB). The basic idea of 

model combination is to use each model’s unique feature to capture different patterns in the 

data. Here combined forecast may not be good always but less risky to forecast compared to 

the individual forecast method.  

Combining different techniques to construct hybrid model has been preferred in the literature 

to take advantage of each method. Among hybrid models, decomposition-based models are 

important techniques in which the original complex series is first decomposed into subseries 

with specific patterns and then built forecasting models for each subseries. Traditionally, two 

component model-based techniques, additive and multiplicative decomposition models, have 

been used in the field of time series forecasting. These techniques decompose a time series into 

trend, cyclic, seasonal and irregular components. The additive method assumes that the 

components are orthogonal, whereas the multiplicative methods assume that the trend and 

seasonal components have a proportional relationship. To overcome these limitations, 

frequency domain analysis (FDA) based decomposition methods are being used. FDA methods 

have demonstrated better performance in dealing with the nonlinear, high-frequency time series 

data. Among FDA, although Fourier spectral analysis has provided a general method to analyze 

time-series data, there are some crucial restrictions of this transformation, i.e. the data must be 

linear and strictly periodic or stationary. As the degree of nonlinearity and nonstationary in a 

time series increases, Fourier decomposition's result often makes little physical sense. Another 

decomposition technique in this category is wavelet decomposition, which is an effective and 

widely used approach for analyzing the price series in both time and frequency domain 

(Antoniadis, 1997). Although wavelet analysis has many advantages in analyzing 

nonstationary time series data, it still suffers limitations like the prior selection of a filter 

function due to its non-adaptive nature. To overcome these limitations, the adaptive empirical 



 
 

 

Training Manual   │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data 
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025) 

- 262 - 
 

mode decomposition (EMD) method for analysis of nonlinear and nonstationary time series 

through a divide and conquer concept was developed (Huang et al., 1998). EMD method 

decomposes time-series data into several independent intrinsic mode functions (IMFs) with 

different amplitude and frequencies and a residue. However, EMD has proved to be a versatile 

technique in a wide range of applications. However, it suffers from a major limitation of mode 

mixing, which means that a single IMF contains sparsely distributed timescales, or similar 

timescales are broken down into different IMFs. To address the problem of EMD, ensemble 

empirical mode decomposition (EEMD) method was developed (Wu and Huang, 2009), which 

significantly reduces the chance of mode mixing and represents a substantial improvement over 

the original EMD.  

The next step in developing hybrid methodology includes forecasting decomposed 

components. The artificial neural networks (ANNs) is used to forecast each component 

individually. One significant advantage of neural network models over other classes of 

nonlinear model is that ANNs are universal approximators which can approximate any 

continuous function with the desired accuracy in case of an adequate training dataset.   

1. Decomposition Techniques 

A decomposition technique is first used to decompose a complex time series into simpler or 

more meaningful components. These components are then modelled individually using a 

suitable forecasting model and the final forecasts are provided by ensembled the individual 

forecasts. Some of the most powerful decomposition techniques are explained below:  

2.1 Empirical mode decomposition (EMD) 

The empirical mode decomposition (EMD) technique has been proposed by N.E. Huang et al. 

(1998), with a view to analyze time-frequency distribution of nonlinear and nonstationary data. 

It is an adaptive decomposition with which any complicated series can be decomposed into its 

intrinsic mode functions (IMFs). IMFs have well-behaved Hilbert transforms, from which the 

instantaneous frequencies can be calculated. Thus, we can localize any event on the time as 

well as the frequency axis. The decomposition can also be viewed as an expansion of the data 

in terms of the IMFs. Then, these IMFs, based on and derived from the data, can serve as the 

basis of that expansion which can be linear or nonlinear as dictated by the data, and it is 

complete and almost orthogonal. Most important of all, it is adaptive. The principle of this basis 
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construction is based on the physical time scales that characterize the oscillations of the 

phenomena. The local energy and the instantaneous frequency derived from the IMFs through 

the Hilbert transform can give us a full energy-frequency-time distribution of the data. Such a 

representation is designated as the Hilbert spectrum; it would be ideal for nonlinear and 

nonstationary data analysis. 

After full decomposition we can get original series in such form  

                        𝑦𝑡 = 𝑐𝑡(1) + 𝑟𝑡(1) 

         = 𝑐𝑡(1) + 𝑐𝑡(2) + 𝑟𝑡(2) 

       = 𝑐𝑡(1) + 𝑐𝑡(2) + 𝑐𝑡(3) + 𝑟𝑡(3) 

            ⋮  

      =∑ 𝑐𝑡
𝑁
𝑗=1 (𝑗) + 𝑟𝑡(𝑁)            

2.2 Ensemble EMD (EEMD) 

Although the EMD shows great advantages in processing nonstationary and nonlinear energy 

prices, there is still a disadvantage of the traditional EMD algorithm, i.e. the decomposition 

results may be mode mixing, which means that a single IMF contains sparsely distributed 

timescales, or similar timescales are broken down into different IMFs. 

In order to overcome this shortcoming, Wu and Huang (2009) propose the EEMD algorithm. 

The algorithm flow of EEM is as follows to find out 𝑗𝑡ℎIMF: 

i.  Introduce a number of Gaussian white noises 𝑛𝑡(𝑖)into data series 𝑦𝑡 

Where  𝑛𝑡(𝑖)~𝑁(0, 𝜎
2)   So 𝑦𝑡(𝑖) = 𝑦𝑡 + 𝑛𝑖(𝑡)        

ii.  Conduct the EMD decomposition on 𝑦𝑡(𝑖)  respectively, and obtaining a set of 

IMFs 𝑐𝑡(𝑖𝑗)and a residue 𝑟𝑡(𝑖) 

Where  𝑐𝑡(𝑖𝑗)is the 𝑗𝑡ℎ  IMF decomposed by EMD after adding the Gaussian white 

noise for an  𝑖𝑡ℎ time. 
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iii. Repeat the above-mentioned steps. The ensemble average of corresponding IMFs is 

seen as the final decomposition result: 

                                                       𝑐𝑡(𝑗) =
1

𝑃
∑ 𝑐𝑡
𝑃
𝑖=1 (𝑖𝑗)     

where 𝑃 is the ensemble size. 

2.  Time Delay Neural Network (TDNN) Model 

The artificial neural network, inspired by the functioning of the human brain, consists of 

abstractions of processing elements in the form of mathematical functions called artificial 

neurons or nodes. The group of neurons operating together forms a layer of neurons and in 

general, three distinct layers are formed in a standard ANN model. These three layers namely 

the input layer, hidden layer and output layer are so interconnected with their nodes that each 

layer receives input from its preceding layer and passes the output to the subsequent layer. The 

input layer consists of the input series, the hidden layer performs the function of capturing the 

pattern and features from the data and finally, the output layer gives the final output as 

prediction or classification. The nodes of the hidden layer and output layer use a function called 

activation function which can be the same or different in these two layers. The activation 

function is used to introduce the nonlinearity in the model and also to limit the range of the 

output.   

ANN models are regarded as data-driven, nonlinear and non-parametric statistical methods 

which capture the features and dependencies in a time series even when the relationship among 

data points is unknown. The ANN models need proper training at first and then the trained 

models are used for any application purpose. The information learned through training is stored 

in the nodes in the form of weights and biases which are used while producing the required 

outputs. Usually, a neural network is used effectively for pattern classification mainly for 

unstructured static data (not related by time constraint). But for temporal data, its training and 

pattern recognition is harder as the patterns evolve. 

TDNN is a type of feed-forward neural network model that is being used for price series 

forecasting successfully. This neural network model builds a short-term memory, in particular, 

heteroassociative memory (Haykin, 2010), in its network through the use of time delays of a 

univariate time series to capture the temporal dimension of the series. To achieve this, a time 

series is first converted into a supervised learning format as a collection of samples. Each 
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sample constitutes an input component (𝑿) and an output component (Y). For example, if a 

time series contain N observations 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑁 and the model is to be made using p lagged 

values as input nodes, then to get one step ahead prediction the first sample will contain 

𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑝 as input components and 𝑦𝑝+1 will be the output component. In this way, a set 

of N-p samples are generated each consisting input vector (𝑿) and an output variable (Y). These 

samples are fed into an algorithm to learn the mapping function from the input to the output 

i.e. 𝑌 = 𝑓(𝑿). The task of the algorithm is to approximate or learn the real underlying mapping 

function so well that it can predict the output variables with maximum possible accuracy 

whenever new input data is given to it. The whole process of learning is called the training of 

the neural network. 

Training of neural network consists of several iterations of the propagation of signals in both 

forward and backward direction. In forward propagation, the example sets having input and 

output values obtained using the supervised learning format are fed into the networks. The 

number of input values of the samples determines the number of input nodes of the network. 

The input values are then passed to the nodes of the hidden layer as their weighted sum where 

some affine transformations are done by nonlinear activation functions of the hidden nodes. 

Mathematically, the forward propagation can be expressed as: 

   

where, 𝑦𝑡, 𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3, … , 𝑦𝑡−𝑝 are the input patterns, is the synaptic weight between 

jth input neuron and mth hidden neuron, 𝜕𝑚 is the weight between mth hidden neuron and the 

output neuron,  is the bias,  and are the activation functions of hidden and output 

nodes, respectively and is the output of the neuron at  time step. In backward 

propagation, a loss function or cost function is computed by comparing the model output and 

desired output. This loss function is traversed backwards in the network computing its gradient 

or partial derivative with respect to all the weights in a particular order as a chain rule. The 

partial derivative with negative direction accounts for gradient descent which updates the 

synaptic weights of the network intending to minimize the loss function as small as possible. 

These several iterations of forward and backward propagation of information of all the 
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examples or samples are called an epoch of the training. Thus, the training of the model requires 

the optimization of several hyperparameters like the number of hidden layers, the number of 

hidden nodes in the layers, type of activation functions etc. Tuning of these hyperparameters 

is problem dependent and determined through experimentation and grid search method on the 

given data. 

 

 

3.3 Extreme learning machine (ELM) 

 

3. Hybrid method 

Given a price series 𝑦𝑡, the modelling procedure consists of three main steps:  

Step 1: Decomposition. The price series 𝑦𝑡  is decomposed into several meaningful and 

simpler components using any of the decomposition techniques. Different techniques yield 

different types of components based on their characteristics. 

Step 2: Individual forecasts. Different forecasting techniques are used to model and forecast 

the individual components obtained after decomposition. The multi-step ahead forecasts of 

these components are obtained through iterative procedure using previous forecasted value as 

an input for forecasting the future value.  

Step 3: Ensemble. The final step is to ensemble the individual forecasts of each components 

obtained by forecasting technique using addition to produce the final forecasts of the price 

series taken. 

4. R package for practical implications 

 

Input  

layer 

Output 
layer 

Hidden 
layer 

Fig.: Feed-forward Neural Network: Information propagates in the forward direction only i.e. from 

input to output;  
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eemdTDNN 

 EMDTDNN (Empirical Mode Decomposition Based Time Delay Neural Network Model) 

Description 

The EMDTDNN function computes forecasted value with different forecasting evaluation 

criteria for Empirical Mode Decomposition based Time Delay Neural Network Model. 

Usage 

EMDTDNN(xt, stepahead = 10, s.num = 4L, num.sift = 50L) 

Arguments 

xt           Input univariate time series (ts) data. 

stepahead   The forecast horizon. 

s.num          Integer. Use the S number stopping criterion for the EMD procedure with the given 

        values of S. That is, iterate until the number of extrema and zero crossings in the 

        signal differ at most by one, and stay the same for S consecutive iterations. 

num.sift      Number of siftings to find out IMFs. 

Examples 

data("Data_Maize") 

EMDTDNN(Data_ Maize) 

(a) EEMDTDNN (Ensemble Empirical Mode Decomposition Based Time Delay Neural 

Network Model) 

Description 

The EEMDTDNN function computes forecasted value with different forecasting evaluation 

criteria for Ensemble Empirical Mode Decomposition based Time Delay Neural Network 

Model. 

Usage 

EEMDTDNN(xt,stepahead=10,num.IMFs=emd_num_imfs(length(data)),s.num=4L, 

num.sift=50L, ensem.size=250L, noise.st=0.2) 

Arguments 

xt           Input univariate time series (ts) data. 

stepahead   The forecast horizon. 

num.IMFs  Number of Intrinsic Mode Function (IMF) for input series. 

s.num          Integer. Use the S number stopping criterion for the EMD procedure with the given                                     

values of S. That is, iterate until the number of extrema and zero crossings in the 

signal differ at most by one, and stay the same for S consecutive iterations. 
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num.sift      Number of siftings to find out IMFs. 

ensem.size   Number of copies of the input signal to use as the ensemble. 

noise.st         Standard deviation of the Gaussian random numbers used as additional noise.  

Examples 

Data("Data_Maize") 

EEMDTDNN(Data_Maize) 
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Kumar 
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Email: santosha.rathod@icar.org.in 

Introduction: 

Particle Swarm Optimization (PSO) is a nature-inspired, evolutionary optimization 

technique developed to address computationally intensive or complex optimization problems. 

It is a stochastic, population-based optimization method that draws inspiration from the social 

behavior of organisms that move in groups or swarms, such as birds or fish. Introduced by 

James Kennedy and Russ Eberhart in 1995, PSO models the way these organisms communicate 

and adjust their paths based on both their own experience and the behavior of others in the 

group. Over the years, PSO has been successfully applied to a broad range of search and 

optimization problems by abstracting the natural dynamics of swarm intelligence. 

PSO shares some conceptual similarities with other evolutionary algorithms like 

Genetic Algorithms (GA), in that both rely on a population of candidate solutions. However, 

the two differ in their philosophical approach. While evolutionary algorithms are rooted in the 

principle of survival of the fittest—emphasizing competition—PSO operates on a cooperative 

principle. In PSO, all individuals or particles in the swarm are allowed to survive and evolve. 

The success of one particle can influence and benefit others in the swarm, reflecting a 

collaborative learning mechanism. 

The basic unit of PSO is a particle, which represents a candidate solution that flies 

through the search space in pursuit of the global optimum. Each particle updates its position 

based on its own best-known position and the best-known position among its neighbors. A 

swarm consists of n such particles, and they exchange information—either directly or 

indirectly—to guide their movement through the solution space. During each iteration, the 

position and velocity of each particle are updated, taking into account both the particle’s own 

past performance and the performance of its neighbors. This dual influence allows the swarm 

to balance exploration and exploitation, ultimately converging towards the optimal solution. 

PSO Vectors:  
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X vector: Current location (current position) of the particle in search space, P vector (pbest): 

Location of best solution found so far by the particle and V vector:  Gradient (direction) for 

which particle will travel in, if undisturbed. All these vectors are continuously updated. 

 

  

Let, 𝐴 ⊂ 𝑅𝑛be search space and the swarm is defined as a set 𝑆 = {𝑋1, 𝑋2, … , 𝑋𝑀}  of 𝑀 

particles (candidate solution), where 𝑀 is a user-defined parameter of the algorithm. Then 𝑖𝑡ℎ 

particle dimension of 𝑑 is defined as 𝑋𝑖 = (𝑋𝑖1 , … , 𝑋𝑖𝑑 )
𝑇 , 𝑖 = 1,2, … ,𝑀. Each particle is a 

potential solution to a problem, characterized by three quantities: velocity 𝑉𝑖 = (𝑉𝑖1 , … , 𝑉𝑖𝑑 )
𝑇, 

current position        𝑋𝑖 = (𝑋𝑖1 , … , 𝑋𝑖𝑑 )
𝑇 and personal best position  𝑝𝑏𝑒𝑠𝑡𝑖 =

(𝑝𝑏𝑒𝑠𝑡𝑖1 , … , 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 )
𝑇. Let, 𝑡 denote current iteration and 𝑔𝑏𝑒𝑠𝑡 denote its global best position 

achieved so far by any of its particles. Initially, swarm is randomly dispersed within search 

space and random velocity is assigned to each particle. Particles interact with one another by 

sharing information to discover optimal solution. Each particle moves in the direction of its 

personal best position (𝑝𝑏𝑒𝑠𝑡) and its global best position (𝑔𝑏𝑒𝑠𝑡). To search optimal solution, 

each particle changes its velocity according to the cognitive and social parts given by: 

𝑉𝑖𝑗(𝑡 + 1) = 𝑤(𝑡)𝑉𝑖𝑗(𝑡) + 𝑐1𝑅1[𝑝𝑏𝑒𝑠𝑡𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)] + 𝑐2𝑅2[𝑔𝑏𝑒𝑠𝑡𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)] 

Where, 𝑖 = 1,2, … ,𝑀  and 𝑗 = 1,2, … , 𝑑 . However, in case of swarm explosion effect, 

corresponding velocity component is restricted to following closest velocity bound: 

𝑉𝑖𝑗(𝑡 + 1) = −𝑉𝑚𝑎𝑥   if  𝑉𝑖𝑗(𝑡 + 1) < −𝑉𝑚𝑎𝑥 
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       =  𝑉𝑚𝑎𝑥 If, 𝑉𝑖𝑗(𝑡 + 1) > 𝑉𝑚𝑎𝑥 

After updating its velocity, each particle moves to a new potential solution by updating its 

position as follows 

𝑋𝑖𝑗(𝑡 + 1) =  𝑋𝑚𝑖𝑛 if 𝑋𝑖𝑗(𝑡 + 1) < 𝑋𝑚𝑖𝑛 

                  = 𝑋𝑖𝑗(𝑡)+𝛽𝑉𝑖𝑗(𝑡 + 1)  , if  𝑋𝑚𝑖𝑛 ≤ 𝑋𝑖𝑗(𝑡 + 1) ≤ 𝑋𝑚𝑎𝑥 

                = 𝑋𝑚𝑎𝑥,  if 𝑋𝑖𝑗(𝑡 + 1) > 𝑋𝑚𝑎𝑥 

Where, 𝑖 = 1,2, … ,𝑀 ; 𝑗 = 1,2, … , 𝑑 . In the above equations 𝑉𝑖𝑗 , 𝑋𝑖𝑗  and 𝑝𝑏𝑒𝑠𝑡𝑖𝑗  are 

respectively velocity, current position and personal best position of particle 𝑖  on the  

𝑗𝑡ℎdimension, and 𝑔𝑏𝑒𝑠𝑡𝑗 is the 𝑗𝑡ℎdimension global best position achieved so far among all 

particles at iteration  𝑡.  𝑅1 and 𝑅2are random values, which are mutually independent and 

uniformly distributed over [0,1], 𝛽 is a constraint factor used to control velocity weight, whose 

value is usually set equal to 1. Positive constants 𝑐1 and 𝑐2 are usually called “acceleration 

factors”. Factor 𝑐1  is sometimes referred to as “cognitive” parameter, while 𝑐1  is referred to 

as “social” parameter. Inertia weight at iteration 𝑡 is 𝑤(𝑡)  and is used to balance global 

exploration and local exploitation. This can be determined by:  

𝑤(𝑡) = 𝑤𝑢𝑝 − (𝑤𝑢𝑝 − 𝑤𝑙𝑜𝑤)𝑡/𝑇𝑚𝑎𝑥 

Where,𝑡 is current iteration number, 𝑤𝑢𝑝 and 𝑤𝑙𝑜𝑤 are desirable lower and upper limits of 𝑤 

and  𝑇𝑚𝑎𝑥 is maximum number of iterations. 
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Fig.: Schematic diagram of particles' velocity.  

Frame work of PSO: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Initialize swarm with random position (X0) and Velocity 

vectors (V0) 

For each Particle 

Evaluate Fitness Next Particle 

IF fitness (Xt) > fitness (gbest) 

gbest = Xt 

Update Position 

Xt+1=Xt+Vt+1 

 

IF fitness (Xt) > fitness (pbest) 

pbest = Xt 

Update Velocity 

𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑡)
+ 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑡) 

TRUE 

FALSE 
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Algorithm Implementation:  

Step 1 involves the initialization of parameters where each particle is randomly assigned a 

position and velocity within the defined search space. This random initialization helps ensure 

that the entire solution space is explored effectively. 

Step 2 requires evaluating each particle’s current position using a predefined fitness function. 

This fitness value indicates how close a particle is to the optimal solution. 

Step 3 is a comparison phase. First, the current fitness value of each particle is compared with 

its personal best fitness value (pbest). If the current value is better, then pbest is updated. 

Second, the fitness value of each particle is compared with the global best fitness value (gbest), 

and if it outperforms the previous gbest, the global best is updated accordingly. 

Step 4 updates each particle’s velocity and position. The update process is influenced by both 

the particle’s personal experience (pbest) and the overall best experience of the swarm (gbest), 

incorporating stochastic elements to enhance exploration. 

Step 5 checks whether the stopping condition has been met. This condition may be reaching a 

maximum number of iterations or achieving a desired fitness level. If not, the algorithm returns 

to Step 2 for another iteration. 

The core idea behind PSO is to guide each particle towards its own best-known position and 

the best-known position found by the swarm, using a combination of deterministic and random 

components. The position update rule is straightforward: the new position 𝑋𝑖+1is obtained by 

adding the current velocity 𝑉𝑖 to the current position 𝑋𝑖, that is, 𝑋𝑖+1 = 𝑋𝑖 + 𝑉𝑖. After moving, 

the particle re-evaluates its position, and if the new fitness value is better than its previous 

personal best, it updates its pbest accordingly. 

Psychosocial compromise:  

Each particle updates its new position by compromising its local best towards the global best 

as depicted schematically in the following diagram. 

Terminate 

End 
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𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑠 𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑡) + 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑡) 
 

User defined parameters: 

Initial parameters such as swarm size, position of particles, velocity of particles and maximum 

number of iterations; and control parameters such as swarm size, inertial weight, acceleration 

coefficients C1 and C2 and number of iterations are very much important to begin with 

optimization algorithm. One has to define them in such a way that obtained parameter error 

should be less then target error.  

Innertial weight (W):  

A large inertia weight (W) facilitates a global search while a small inertia weight facilitates a 

local search. 

 

 

       

 

 

Acceleration coefficients: 

An acceleration coefficient determines the inclination of search, greater the C1, greater will be 

the global search ability, greater the C2, greater will be the local search ability. 
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Pseudo code of PSO:  

For each particle 

{ 

    Initialize particle 

} 

Do until maximum iterations or minimum error criteria 

{ 

    For each particle 

    { 

        Calculate Data fitness value 

        If the fitness value is better than pBest 

        { 

            Set pBest = current fitness value 

        } 

        If pBest is better than gBest 

        { 

            Set gBest = pBest 

        } 

    } 

        For each particle 

    { 

        Calculate particle Velocity 

        Use gBest and Velocity to update particle Data 

    } 

 } 

Pseudocode in mathematical representation: 

C2>C1 Greater local search 

ability 
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Numerical Example 1:  

[Reference: Mohanty, P. (2018). NTPL online certification course on selected topics on 

decision modelling, Particle Swarm Optimization, IIT Khargapur. 
https://www.youtube.com/watch?v=uwXFnzWaCY0 ] 

Consider a maximization problem for maximization of the function 𝑓(𝑥) = 1 + 2𝑥 − 𝑥2 

Let us consider the control parameters W=0.70, C1=0.20, C2=0.60 and n=5 (Swarm particle). 

Consider, random numbers used for updating velocity of particle be  

r1 = [0.4657, 0.8956, 0.3877, 0.4902, 0.5039] 

r2 = [0.5319, 0.8185, 0.8331, 0.7677, 0.1708] 

Note: We keep the random numbers fixed for all the iterations throughout and each random 

number is corresponding to each particle. 

Initialization of swarm particles: We initialize fitness of all the particles as zeros;  

https://www.youtube.com/watch?v=uwXFnzWaCY0
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Current position of all the particles as; 

Cp(0)=10*[r1-0.5] 

Cp(0)=10*{[0.4657, 0.8956, 0.3877, 0.4902, 0.5039]-0.5} 

So, Cp(0)=[-0.3425, 3.9558, -1.128, -0.0981, 0.0385] 

Note: Multiplied by 10 to initialize at least some particles to be >1 and subtracted 0.5 sides to 

generate both positive and negative random numbers. 

Initialization of velocity:  

V(0)=r2-0.5 

V(0)={[ 0.5319, 0.8185, 0.8331, 0.7677, 0.1708]-0.5} 

We get, 

V(0)=[0.0319, 0.3185, 0.3331, 0.2677, -0.3292] 

Note: one should see that velocity should not be too high or too low. 

 

Current position and current fitness: 

Iteration 1: 

Current position (Cp) of each particle is what we initialize 

Cp(1)= Cp(0)= [-0.3425, 3.9558, -1.128, -0.0981, 0.0385] 

Current velocity V(1)=V(0) 

                                    =[0.0319, 0.3185, 0.3331, 0.2677, -0.3292] 

Current fitness CF(1)= 𝑓(𝐶𝑝(1)) = 1 + 2𝐶𝑝(1) − 𝐶𝑝(1)2 

                                                       = [0.1976, -6.7368, -2.5061, 0.7942, 1.0755] 

Note: 𝐶𝑝(1)2 is obtained by squaring individual elements of Cp(1). As of now, we obtained 

current velocity, current position and current fitness.  

Local best position (LBP)of each particle up to first iteration is just its current position. 

LBP(1)=Cp(1)=[-0.3425, 3.9558, -1.128, -0.0981, 0.0385] 
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Local Best fitness of each particle up to iteration 1=current fitness of iteration 1 

Local Best Fitness (LBF) 

LBF(1)=CF(1)=[0.1976, -6.7368, -2.5061, 0.7942, 1.0755] 

Global Best Fitness of iteration 1= Max (LBF(1)); 

GBF(1)=1.0755  → for 5th particle 

Global Best Position of iteration 1 

GBP(1)=Corresponding current position of 5th particle in cp(1) 

            =0.0385 

Velocity of iteration 2 

Velocity for next iteration 

 𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝐿𝐵𝑃(𝑖) − 𝐶𝑝(𝑖)) + 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝐺𝐵𝑃(𝑖) − 𝐶𝑝(𝑖)) 
We have from iteration 1 

V(1)=[0.0319, 0.3185, 0.03331, 0.2677, -0.3292] 

For 1st particle: r1=0.4657 ,r2=0.5319, CP(1)=-0.3425, LBP(1)=-0.3425 and  GBP(1)=0.0385 

So, for the iteration 2, for the particle 1st: 𝑉2 = 0.7𝑉(1) + 0.2 ∗ 𝑟𝑎𝑛𝑑(0,1)(𝐿𝐵𝑃(𝑖) −

𝐶𝑝(𝑖)) + 0.6 ∗ 𝑟𝑎𝑛𝑑(0,1)(𝐺𝐵𝑃(𝑖) − 𝐶𝑝(𝑖)) =0.1439 

Thus we have for iteration 2 

V(2)=[0.1439, -1.7008, 0.8136, 0.2503, -0.2304] 

Current position and current fitness 

Current position for next iteration 

𝐶𝑝(𝑖 + 1) = 𝑐𝑝(𝑖) + 𝑉(𝑖 + 1) 

WKT, 

CP(1)=[-0.3425, 3.9558, -1.1228, -0.0981, 0.0385]  & V(2)=[0.1439, -1.7008, 0.8136, 

0.2503, -0.2304] 

Hence, CP(2)=[-0.1986, 2.2550, -0.3092, 0.1522, -0.1919] 

Current fitness for next iteration 

CF(i)= 𝑓(𝐶𝑝(𝑖)) = 1 + 2𝐶𝑝(𝑖) − 𝐶𝑝(𝑖)2 
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Hence, CF(2)=[0.5634, 0.4250, 0.2860, 1.2812, 0.5794] 

We know that Local Best Fitness is LBF(1)=[0.1976, -6.7368, -2.5061, 0.7942, 1.0755] 

Hence, 

LBF(2)=Max[CF(2), LBF(1)]  = [0.5634,0.4250, 0.2860, 1.2812, 1.0755] 

Local Best & Global Best 

We have for iteration 2: 

CP(2)=[-0.1986, 2.2550, -0.3092, 0.1522, -0.1919] and  LBF(2)= [0.5634,0.4250, 0.2860, 

1.2812, 1.0755] 

Hence Global Best Fitness in iteration 2, 

GBF(2)= Max(LBF(2))=1.2812 

So, Global Best Position in iteration 2, GBP(2)= 0.1522(4th particle position in CP(2)) 

Local Best Position of each particle in iteration 2 

CP(1)=[-0.3425, 3.9558, -1.1228, -0.0981, 0.0385] and LBF(1)=[0.1976, 0.4250, 0.2860, 

1.2816, 0.5794] 

So, LBP(2)= position w.r.t. LBF(2)=[-0.1976, 2.2550, -0.3092, 0.1522, 0.0385] 

Current position is best for first 4 particle, but not for 5th last one is better 

Summary: Iteration 1 & 2 

Iteration  V(i) & CP (i) CF(i) & LBF (i) GBF(i) LBP(i) & GBP(i) 

1 V(1)=[0.0319, 0.3185, 

0.03331, 0.2677, -

0.3292] 

 

CP(1)=[-0.3425, 

3.9558, -1.1228, -

0.0981, 0.0385] 

CF(1)=[0.1976, -

6.7368, -2.5061, 

0.7942, 1.0755] 

 

LBF(1)=[0.1976, -

6.7368, -2.5061, 

0.7942, 1.0755] 

GBF(1) 

=1.0755 

LBP(1)=[-

0.3425, 3.9558, -

1.1228, -0.0981, 

0.0385] 

 

GBF(1)=0.0385 

2 V(2)=[0.1439, -1.7008, 

0.8136, 0.2503, -

0.2304] 

 

CP(2)=[-0.1986, 

2.2550, -0.3092, 

0.1522, -0.1919] 

CF(2)= 

[0.5634,0.4250, 

0.2860, 1.2812, 

0.5794] 

 

LBF(2)= 

[0.5634,0.4250, 

GBF(2) 

=1.2812 

LBP(2)=[-

0.1986, 2.2550, -

0.3092, 0.1522, 

0.0385] 

 

GBP(2)=0.1522 
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 0.2860, 1.2812, 

1.0755] 

 

 

Summary: Iteration 3 & 4 

 

3 V(3)=[0.02127, 

-2.2232, 

0.8001, 0.1752, 

-0.1120] 

 

CP(3)=[0.0141, 

0.0318, 0.4909, 

0.3274, -

0.2944] 

CF(3)=[1.0279,1.0625,1.7410, 

1.5464, 0.3246] 

 

LBF(3)=[1.0279, 1.0625, 

1.7410, 1.5464, 1.0755] 

GBF(3)=1.7410 LBP(3)=[0.0141, 

0.0318, 0.4909, 

0.3274, 0.0385] 

 

GBP(3)=0.4909 

4 V(4)=[0.3011, 

-1.3308, 

0.5601, 0.1980, 

0.0420] 

 

CP(4)=[0.3152, 

-1.2990, 

1.0510, 0.5254, 

-0.2523] 

CF(4)=[1.5312, -3.2861, 

1.9974, 1.7740, 0.4317] 

 

LBF(4)=[1.5312, 1.0625, 

1.9974, 1.7740, 1.0755] 

GBF(4)=1.9974 

 

 

(Best fitness) 

LBP(4)=[0.3152, 

0.0318, 1.0510, 

0.5254, 0.0385] 

 

GBP(4)=1.0510 

 

(Best position) 

 

𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑡) + 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑡) 
 

𝐶𝑝(𝑖 + 1) = 𝑐𝑝(𝑖) + 𝑉(𝑖 + 1) 

𝐿𝐵𝐹(𝑖 + 1) = 𝑀𝑎𝑥[𝐶𝐹(𝑖 + 1), 𝐿𝐵𝐹(𝑖)] 

𝐺𝐵𝐹(𝑖) = 𝑀𝑎𝑥[𝐿𝐵𝐹(𝑖)] 

Final solution: 
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From iteration 4, we have, Global Best Position GBP(4)=1.0510 & Global Best Fitness 

GBF(4)=1.9974 Hence the final solution obtained as x*=1.0510 and f(x*)=1.9974 . 

Numerical Example 2 – Robust Regression with Particle Swarm Optimisation 

[Reference:  Enrico Schumann. Robust Regression with Particle Swarm Optimisation. https://cran.r-

project.org/web/packages/NMOF/vignettes/PSlms.pdf ] 

#R code for – Robust Regression with Particle Swarm Optimisation 

install.packages("NMOF") 

install.packages("MASS") 

library("NMOF") 

library("MASS") 

set.seed(11223344) 

createData <- function(n, p, constant = TRUE, 

                       sigma = 2, oFrac = 0.1) { 

  X <- array(rnorm(n * p), dim = c(n, p)) 

  if (constant) 

    X[, 1L] <- 1L 

  b <- rnorm(p) 

  y <- X %*% b + rnorm(n)*0.5 

  nO <- ceiling(oFrac*n) 

  when <- sample.int(n, nO) 

  X[when, -1L] <- X[when, -1L] + rnorm(nO, sd = sigma) 

  list(X = X, y = y, outliers = when) 

} 

n <- 100L ## number of observations 

https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
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p <- 10L ## number of regressors 

constant <- TRUE; sigma <- 5; oFrac <- 0.1 

h <- 75L ## ... or use something like floor((n+1)/2) 

aux <- createData(n, p, constant, sigma, oFrac) 

X <- aux$X; y <- aux$y 

Data <- list(y = as.vector(y), X = X, h = h) 

plot(Data) 

plot(X,y) 

plot(y, type="l") 

par(bty = "n", las = 1, tck = 0.01, mar = c(4,4,1,1)) 

plot(X[ ,2L], type = "h", ylab = "X values", xlab = "observation") 

lines(aux$outliers, X[aux$outliers ,2L], type = "p", pch = 21, 

        col = "blue", bg = "blue") 

OF <- function(param, Data) { 

  X <- Data$X; y <- Data$y 

  aux <- y - X %*% param 

  aux <- aux * aux 

  aux <- apply(aux, 2L, sort, partial = Data$h) 

  colSums(aux[1:Data$h, ]) ## LTS 

} 

popsize <- 100L; generations <- 500L 

ps <- list(min = rep(-10,p), 

             max = rep( 10,p), 

             c1 = 0.9, 

             c2 = 0.9, 

             iner = 0.9, 

             initV = 1, 

             nP = popsize, 

             nG = generations, 

             maxV = 5, 

             loopOF = FALSE, 

             printBar = FALSE, 

             printDetail = FALSE) 

system.time(solPS <- PSopt(OF = OF, algo = ps, Data = Data)) 

solPS <- PSopt(OF = OF, algo = ps, Data = Data) 

solPS 

 

Suggested Readings: 

• Dai, H.-P.; Chen, D.-D.; Zheng, Z.-S. Effects of Random Values for Particle Swarm 

Optimization Algorithm. Algorithms 2018, 11, 23. https://www.mdpi.com/1999-

4893/11/2/23 

• Enrico Schumann. Robust Regression with Particle Swarm Optimisation. https://cran.r-

project.org/web/packages/NMOF/vignettes/PSlms.pdf ] 

• Gilli, M., D. Maringer and E. Schumann. (2011). Numerical Methods and 

Optimization in Finance. Elsevier. 

https://www.mdpi.com/1999-4893/11/2/23
https://www.mdpi.com/1999-4893/11/2/23
https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
http://www.elsevierdirect.com/ISBN/9780123756626/Numerical-Methods-and-Optimization-in-Finance
http://www.elsevierdirect.com/ISBN/9780123756626/Numerical-Methods-and-Optimization-in-Finance
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• J. Kennedy, The particle swarm: social adaptation of knowledge, IEEE International 

Conference on Evolutionary Computation, 1997Indianapolis, IN. 

https://ieeexplore.ieee.org/document/592326 

• Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical Methods and 

Optimization in Finance. Elsevier/Academic Press, 2011. URL 

http://enricoschumann.net/NMOF 

• Mohanty, P. (2018). NTPL online certification course on selected topics on decision 

modelling, Particle Swarm Optimization, IIT Khargapur. 

https://www.youtube.com/watch?v=uwXFnzWaCY0 ] 

• Soumya D. Mohanty (2012). Particle Swarm Optimization and regression analysis – I, 

Astronomical Review, 7:2, 29-35, DOI: 10.1080/21672857.2012.11519700. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://ieeexplore.ieee.org/document/592326
http://enricoschumann.net/NMOF
https://www.youtube.com/watch?v=uwXFnzWaCY0
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ML Optimization: Spider Monkey Optimization for Agriculture 
Prof. Dharavath Ramesh 

Department of Computer Science and Engineering, Indian Institute of Technology 

Dhanbad 

Email:drramesh@iitism.ac.in 

1. Introduction 

Agriculture is a vital sector that feeds the world's population, but it is increasingly under 

pressure from climate change, limited resources, and the need for sustainable practices. 

Traditional farming methods often struggle to efficiently allocate resources like water, 

fertilizers, and labor. Therefore, advanced computational approaches are needed to make 

agriculture smarter and more resilient. Among nature-inspired metaheuristic techniques, the 

Spider Monkey Optimization (SMO) algorithm has emerged as a flexible, adaptive method for 

tackling complex optimization tasks in agriculture. This document demonstrates how SMO can 

be practically applied to real-world agricultural scenarios, supporting farmers and 

policymakers in decision-making processes. 

Agriculture faces numerous challenges in the modern world, including increasing productivity, 

optimizing resource usage, and ensuring sustainability. To address these issues, nature-inspired 

optimization algorithms have become popular due to their efficiency in solving complex 

problems. One such algorithm is the Spider Monkey Optimization (SMO) algorithm, inspired 

by the social behavior of spider monkeys. This document explores how SMO can be applied 

in agriculture through a detailed case study. 

2. What is Spider Monkey Optimization (SMO)? 

 

Spider Monkey Optimization is a swarm intelligence-based algorithm inspired by the 

fission-fusion social structure of spider monkeys. Spider monkeys dynamically split and merge 

their groups to forage for food efficiently. This behavior is modeled mathematically to solve 

complex optimization problems by searching large solution spaces effectively. 

Spider Monkey Optimization (SMO) is a stochastic technique based on the social 

behavior of spider monkeys. This methodology provides a fascinating research opportunity in 

the field of optimization. The algorithm imitates the foraging behavior of spider monkeys that 

has been identified as a Fission-Fusion Social Structure (FFSS) based animal. SMO is similar 

to other population-based algorithms where each SM represents a potential solution for the 

considered problem. The working of SMO consists of four steps. Initially, in the first step, the 

group of spider monkeys starts food foraging and analyzes the distance from the food. Second, 

the group member updates their position based on the distance from the food and again 

evaluates the distance from food.  Third, the local leader updates its best position within the 

group. If the best position is not updated within the defined threshold value, then all the 

members of the local groups start food foraging in other directions. In the last step, the ever-

best position of the global leader is updated.  
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Furthermore, the group splits into smaller size subgroup to avoid stagnation. All these 

aforementioned steps are repeated several times until the desired result is achieved. SMO 

introduces two important control variables named LocalLeaderLimit (LLL) and 

GlobalLeaderLimit(GLL) to avoid stagnation in the local leader and the global leader phase. 

SMO is inspired by the intelligent foraging behavior of animals and follows the principle of 

division of labor property and self-organization. Modelling the SMO problem for workflow 

scheduling is a two-step process.  The First step involves the identification of search space and 

the representation of the solution, i.e., how the defined problem is encoded. The second step 

defines the fitness function which is used to measure the quality of the solution.  

In order to define the encoding of a solution, it is required to initialize the population of 

spider monkeys randomly.  Afterwards, in each iteration, the fitness value of each spider 

monkey is evaluated using fitness function defined as optimization and scheduling constraints.  

Spider monkey repeatedly updates their position based on the LocalLeader, Local group 

members, and GlobalLeader experience to achieve the best fitness value. These steps are 

repeated until the algorithm attains the desired output. 

 

Key Features: 

 

- Decentralized decision-making. 

- Dynamic grouping and regrouping. 

- Balance between exploration and exploitation. 

- Pest control strategy optimization. 

- Yield prediction models. 

3. SMO Algorithm Steps 

 

✓ Initialization: Define population size, group size, and objective function. 

✓ Local Leader Phase: Individuals follow their local leader to exploit the search space. 

✓ Global Leader Phase: Groups are influenced by a global leader to explore new areas. 

✓ Local Leader Learning Phase: Local leaders are updated based on the group's 

performance. 

✓ Global Leader Learning Phase: Global leader changes if needed. 

✓ Decision to Split or Merge: Groups split or merge based on performance and diversity. 

(i) Initialization:  

• Initialize population of spider monkeys (possible solutions). 

• Set parameters: 

• Number of groups, 

• Number of spider monkeys per group, 

• Maximum number of iterations, 

• Probability of local leader and global leader learning. 
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(ii) Fitness Evaluation: 

• Evaluate each spider monkey’s position using the objective function (e.g., prediction 

error for crop yield). 

(iii) Identify Leaders: 

• Global Leader: The spider monkey with the best fitness in the whole population. 

Local Leaders: The best monkey in each group. 

(iv) Update Position: 

 

 

 

 

 

(v) Local Leader Phase: 

• If a group doesn’t improve for a set number of iterations, reinitialize that group’s 

members or make them explore new areas. 

(vi) Global Leader Phase: 

• If the global leader doesn’t improve for a set number of iterations, increase the number 

of groups (fission) to enhance exploration. 

(vii) Merge (fusion): 

• If exploration stagnates or the maximum number of groups is reached, groups may 

merge to share information. 

(viii) Termination: 

• Repeat steps ii–vii until: 

• Maximum iterations reached, or 

• Desired fitness achieved. 

SMO Process Flow: 
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SMO Social Structure:  

 

 

 

 

 

 

4. Case Study: SMO for Crop Yield Prediction 

Problem Statement: Predict wheat yield based on: 

• Rainfall, 

• Temperature, 

• Soil moisture, 

• Fertilizer use. 

Objective: Minimize prediction error. 

Step-by-Step Explanation 

Initialization: 

• Suppose we have 30 spider monkeys (solutions). 

• Each monkey represents a possible set of model parameters for a regression model 

(like SVR, ANN, or even coefficients in a custom yield model). 

 Fitness Function: 

• Use Mean Squared Error (MSE) between actual and predicted yield. 

Leaders: 

• Identify the monkey with the lowest MSE globally and the best in each subgroup. 

Update: 

• Each monkey adjusts its model parameters based on leaders. 

earning Phases: 

• If a local leader’s group doesn’t improve, its members search wider. 

• If the global best stagnates, new groups split off to explore different parameter 

regions. 

Stopping: 
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• Stop if the minimum MSE is acceptable or after, say, 200 iterations. 

Result: 

The best monkey’s parameters are used to make accurate crop yield predictions. 

Key Benefit 

SMO adaptively balances exploration (global search) and exploitation (local refinement), 

making it well-suited for optimizing complex, nonlinear models like those used in precision 

agriculture. 

SMO Flowchart: 

     

 

 

 

 

 

 

 

 

 

Numerical Example: 
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Example: 

• Monkey A: [0.02, 0.05, 0.03, 0.5] 

• Predicted Y = 0.02×50 + 0.05×25 + 0.03×30 + 0.5 

       = 1.0 + 1.25 + 0.9 + 0.5 = 3.65 

MSE = (3.0 – 3.65)² = 0.4225 

Each monkey represents different weights → best one has the lowest MSE. 

Simple Python code snippet: 

 

import numpy as np 

 

# Initialize 

num_monkeys = 10 

num_params = 4  # w1, w2, w3, b 

max_iter = 50 

 

# Example input and output 

X = np.array([50, 25, 30]) 

Y_actual = 3.0 

 

# Initialize monkey population randomly 

population = np.random.uniform(-1, 1, (num_monkeys, num_params)) 

 

# Fitness function: MSE 

def fitness(monkey): 

    Y_pred = np.dot(monkey[:3], X) + monkey[3] 

    return (Y_actual - Y_pred) ** 2 

 

for iteration in range(max_iter): 

    fitness_vals = np.array([fitness(m) for m in population]) 

    global_leader = population[np.argmin(fitness_vals)] 

    for i in range(num_monkeys): 

        r1, r2 = np.random.rand(), np.random.rand() 

        population[i] += r1 * (global_leader - np.abs(population[i])) 

     

    # Optional: Local leader logic can be added here 

 

best_monkey = population[np.argmin([fitness(m) for m in population])] 

print("Best weights found:", best_monkey) 

 

5. Advantages of Using SMO in Agriculture 

- Can adapt to real-time data inputs. 

- Handles uncertainty in environmental parameters. 
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- Reduces operational costs by optimizing inputs. 

- Improves sustainability and resource management. 

Spider Monkey Optimization (SMO) offers several distinct advantages when applied to 

agriculture. Its nature-inspired design makes it highly effective for handling complex, nonlinear 

agricultural problems where multiple factors such as soil conditions, weather, pests, and crop 

genetics interact dynamically. The unique fission-fusion social structure of SMO enables an 

adaptive balance between exploration and exploitation, helping it avoid local optima and find 

better solutions for tasks like crop yield prediction, irrigation scheduling, fertilizer application, 

and precision pest management. SMO can be easily integrated with data-driven models, 

including machine learning frameworks, making it suitable for optimizing parameters in 

predictive analytics and decision-support systems in smart farming. Its scalability allows it to 

handle large datasets from IoT sensors and remote sensing technologies, which are increasingly 

common in modern precision agriculture. Moreover, SMO is robust against uncertainties such 

as unpredictable weather or market fluctuations, thanks to its collective learning behavior that 

mimics real-life social decision-making. Lastly, SMO is relatively easy to implement and 

adapt, and can be hybridized with other metaheuristic techniques like Particle Swarm 

Optimization (PSO) or Genetic Algorithms (GA) to enhance its performance for specific 

agricultural applications. 

6. Challenges and Future Scope 

While Spider Monkey Optimization (SMO) shows great promise for diverse agricultural 

applications, its practical deployment also faces certain challenges. One key challenge is the 

need for high-quality, real-time agricultural data, as inaccurate or sparse data can limit the 

algorithm’s effectiveness and lead to unreliable predictions or suboptimal decisions. 

Additionally, fine-tuning SMO’s parameters — such as group sizes, learning probabilities, and 

stopping criteria — can be complex and may require domain expertise to adapt the algorithm 

to different crops, regions, and seasons. Computational cost can be significant for large-scale 

problems, especially when SMO is combined with high-dimensional models or real-time IoT 

sensor networks. Another challenge lies in the interpretability of the solutions; farmers and 

stakeholders may find it difficult to trust black-box optimization outputs without clear 

explanations or user-friendly interfaces. 

Despite these challenges, the future scope for SMO in agriculture is highly encouraging. 

Advances in precision agriculture, remote sensing, and IoT are creating rich, real-time data 

streams that can feed SMO-driven decision systems, improving their accuracy and adaptability. 

Hybrid approaches that combine SMO with other metaheuristic algorithms, machine learning 

models, or domain-specific constraints could deliver even better performance and robustness. 

Integration with digital twins of farms, climate-smart farming systems, and autonomous 

machinery is another promising direction, enabling SMO to optimize dynamic operations in 

real time. Furthermore, user-friendly decision support tools, mobile applications, and cloud-

based platforms can help translate SMO’s complex computations into actionable insights for 

farmers and policymakers. Continued research into explainable optimization, scalable 
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implementations, and cross-disciplinary collaboration will be key to unlocking SMO’s full 

potential in achieving sustainable, data-driven agriculture. 

7. Conclusion 

In summary, Spider Monkey Optimization (SMO) stands out as a promising nature-

inspired metaheuristic algorithm for addressing the multifaceted challenges of modern 

agriculture. By mimicking the adaptive and cooperative social behavior of spider monkeys, 

SMO effectively balances global exploration and local exploitation, making it highly suitable 

for solving complex, nonlinear problems such as crop yield prediction, irrigation scheduling, 

and resource optimization. Its ability to integrate with machine learning models and process 

large volumes of data from IoT and remote sensing technologies positions it as a valuable tool 

for smart, data-driven farming practices. 

However, successful implementation of SMO in agricultural contexts also depends on 

overcoming practical challenges such as data availability, parameter tuning complexity, 

computational demands, and the interpretability of results for end-users. Addressing these 

challenges through hybrid algorithm designs, user-friendly decision-support systems, and 

scalable digital infrastructure can unlock SMO’s full potential. 

Looking ahead, the integration of SMO with emerging technologies like digital twins, 

autonomous farming equipment, and explainable AI offers exciting opportunities to enhance 

sustainability, resilience, and efficiency in agriculture. With continued research, collaboration, 

and technological advancements, Spider Monkey Optimization could play a significant role in 

shaping the future of precision and climate-smart farming, ultimately contributing to global 

food security and sustainable development goals. 

---------------------------------------------------------------------------------------------------------- 

"It is better to live your own destiny imperfectly than to live an imitation of 

somebody else's life with perfection. 
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