

Time Series Analysis & Machine Learning for Predictive

Modeling

Editors

Santosha Rathod

Nobin Chandra Paul

Ponnaganti Navyasree

K Ravi Kumar

Prabhat Kumar

2025

School of Social Science and Policy Support

ICAR-National Institute of Abiotic Stress

Management, Baramati – 413115

Maharashtra, India

Title: Time Series Analysis & Machine Learning for Predictive Modeling

Editors: Santosha Rathod, Nobin Chandra Paul, Ponnaganti Navyasree, K Ravi Kumar,

Prabhat Kumar

Published by: ICAR-National Institute of Abiotic Stress Management, Malegaon Khurd,

Baramati – 413115, Maharashtra, India.

Edition: I

Volume: 3

ISBN: 978-81-985897-0-5

Copyright: ICAR-National Institute of Abiotic Stress Management, Malegaon Khurd,

Baramati, Pune – 413115, Maharashtra, India.

Citation:

Rathod, S., Paul, N. C., Ponnaganti, N., Kumar, K. R., & Kumar, P. (Eds.). (2025). Time

Series Analysis & Machine Learning for Predictive Modeling: Training manual of the

twenty-one-day online training programme on “Advanced statistical and machine learning

techniques for data analysis using open-source software for abiotic stress management in

agriculture” (Vol. 3). ICAR-National Institute of Abiotic Stress Management. ISBN 978-

81-985897-0-5.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

CONTENTS

S No Title Page No

MODULE 4: Time Series & Forecasting Methods

1 Trend Analysis for Climatic Data 1-8

2 Time Series Analysis for Abiotic Stress Management 9-26

3 ARCH Family of Models 27-35

4 Introduction to Bayesian Time Series Analysis 36-45

5 Count Time Series Models 46-50

6 Spatiotemporal Time Series Modelling and Forecasting for Abiotic

Stress Management in Agriculture

51-62

7 Vector Autoregressive Model 63-71

8 Introduction to Functional Time Series Analysis 72-88

9 Trend Impact Analyss and its Application 89-104

10 Cointegration Analysis 105-110

11 Long Memory Time-Series Models 111-122

12 Wavelets Time-Series Analysis 123-142

MODULE 5: Machine Learning & Deep Learning Techniques

13 Introduction to Machine Learning 143-154

14 Artificial Neural Network 155-165

15 Support Vector Machine 166-174

16 CART (Classification and Regression Tree) and Decision Tree 175-191

17 Extreme Learning Machine (ELM) 192-196

18 Random Forest Regression 197-205

19 Xgboost Algorithm 206-216

20 Deep Learning for Abiotic Stress Management in Agriculture 217-246

21 Hybrid TS Modelling: Applications in Abiotic Stress Management 247-259

22 Ensemble Time Series Framework for Agricultural Price

Forecasting

260-268

23 ML Optimization: Particle Swarm Optimization 269-283

24 ML Optimization: Spider Monkey Optimization for Agriculture 284-291

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 1 -

Trend Analysis for Climatic Data
 Naveena K

Centre for Water Resources Development and Management (CWRDM), Kozhikode -

673571, Kerala, India.

Email: naveenak@cwrdm.org

Introduction:

Climate change is a long-term continuous change in average weather conditions either increase

or decrease pattern. Climate variability looks at changes that occur within smaller timeframes,

such as a month, a season or a year. Random fluctuation in climate patterns makes important

to study both long-term and short term moments to conclude precisely about climate. During

changing climatic scenarios, the identification of weather movements precisely is very essential

for planning and implementation of various activities, including agricultural practices,

cropping system, mitigation of landslides and control of flood damages. Extremities in weather

events make a greater impact on the lives of the individuals. So, it is important to determine

their potential long term pattern (trends) accurately.

In order to detect trends in weather parameters, several statistical methods have been put to

practice. The non-parametric tests like Mann-Kendal test, Modified Man Kendal test;

innovative trend analysis are commonly using methods for trend analysis using weather

information. Linear regression method is one of the parametric methods for trend analysis, but

due to its predefined assumption rigidity limits the usage for long term moment analysis.

Mann-Kendall test (MK test)

Mann-Kendall test is the nonparametric test to detect the long-term moment in the time

series. Test statistic for the MK test will be calculated using the sign of differences rather than

the values of the random variables so the trend value will be least affected by nonlinearities

compared to the parametric test like linear regression (Sanjeevaiah et al, 2021).

The hypothesis considered under the test is:

Null Hypothesis (H0) = There is no presence of a monotonic trend in the time series.

Alternative Hypotheses (Ha) = There is a presence of a monotonic trend that may be decreasing

or increasing in the time series.

The Mann-Kendall test statistic defined by S is calculated using the formula:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 2 -

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

− 𝑥𝑖) ………… . (2)

Where 𝑥𝑗 and 𝑥𝑖 are the annual values in years j and i, j>i respectively, and n is the number of

observations. The value of 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) is computed as follows:

𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0

0 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

 … . . (3)

For large samples (n>10), the test is conducted using a normal approximation with the mean

(𝐸[𝑆])and the variance (𝑉𝑎𝑟(𝑆)) as follows:

𝐸[𝑆] = 0

𝑉𝑎𝑟(𝑆) =
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) −∑𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑞

𝑝=1

] ……………(4)

Here q is the number of tied groups, and tp is the number of data values in the pth group. The

values of S and Var(S) are used to compute the test statistic Z as follows:

𝑍 =

{

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 > 0

0 𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 < 0

 ……………(5)

The presence of a statistically significant trend is evaluated using the Z value. The upward trend

in the series will be indicated by a positive Z value and the downward trend by a negative Z

value. H0 is rejected if the absolute value of Z is greater than Z1-α/2, where Z1-α/2 is obtained

from the standard normal cumulative distribution tables. The Z values were tested at 0.05 level

of significance.

The monotonic relationship between lag values xi and xi+1 is measured by Kendall’s tau

correlation coefficient (𝜏)

𝜏 =
𝑠

𝑛(𝑛 − 1)/12
 ………… . . (6)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 3 -

Wallis and Moore Phase-Frequency test (WM test)

The Wallis and Moore phase-frequency test is used to test the independency in series

(Wallis & Moore, 1941). The hypothesis considered under the test is,

H0: The series is random in nature, against the

Ha: The series is nonrandom in nature.

The test statistic in the ordered series (n>30) is

𝑍 =
|ℎ − (

2𝑛 − 7
3)|

√16𝑛 − 29
90

 …………………(7)

Where h is the number of phases. If n≤30 then a correction of 0.5 is included in the

denominator.

Modified Man-Kendall test (MMK test)

Even though The Mann-Kendall test is the commonly used statistical tool for testing monotonic

trends, it assumes that observation should be free from autocorrelation. The positive

autocorrelation in the series will mislead the trend results (Yue et al, 2002) from the MK test

by increasing the probability of significant trend. This can be corrected by Modified Mann–

Kendall test (Yue and Wang 2004), which removes the linear trend component from the series

and then, the effective sample size is calculated using the lag-1 serial correlation coefficient.

The variance correction using an effective sample size will eliminate the effect of

autocorrelation present in the time series (Sanjeevaiah et al, 2021). So, in this method variance

of the MK test will be replaced by modified variance and the remaining procedure will proceed

the same to identify the trend. The accuracy of the MMK test is higher than the original MK

test with respect to the empirical significance level.

The modified variance (V(S)*) using Effective Samples Size is given by:

𝑉(𝑆)∗ = 𝑉(𝑆).
𝑛

𝑛∗
 ……… . . (8)

Where n is the Actual sample size (ASS), n/n* is the correction Factor (CF) and n* is the

Effective Sample Size.

The Effective Sample Size can be computed by:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 4 -

𝑛∗ =
𝑛

1 + 2𝜌𝑘 ∑ (1 −
𝑘
𝑛)

𝑛−1
𝑘−1

 ……… (9)

Where 𝜌𝑘 is the lag-k autocorrelation coefficient which can be estimated by sample

autocorrelation for kth lag (𝜌𝑘).

The MMK test was done using “modifiedmk” package of R software.

Sen’s slope estimator

The Sen’s nonparametric method is used to estimate the unit changes per year in the

series. Here the trend in the series can be assumed to be linear.

𝑓(𝑡) = 𝑄𝑡 + 𝐵 ……… . . (10)

Where B is a constant, t is time and Q is the slope. The slopes of all data value pairs will be

calculated to estimate the Q using the equation:

𝑄𝑖 =
𝑥𝑗 − 𝑥𝑘

𝑗 − 𝑘
 ……… (11)

Where xj and xk are data values at time j and k (j>k) respectively. If there are n values xj in the

time series, there will be as many as N = n(n-1)/2 slope estimates Qi. The Sen’s estimator of

slope is the median of these N values of Qi. The N values of Qi are ranked from the smallest to

the largest and the Sen’s estimator is,

𝑄 = 𝑄
[
(𝑁+1)

2
]
 , if N is odd or ……………….(12)

𝑄 =
1

2
(𝑄

[
𝑁

2
]
+𝑄

[
(𝑁+2)

2
]
) , if N is even. ………………...(13)

Illustration for trend analysis

Examination of spatiotemporal dynamics of rainfall pattern of Wayanad region of Kerala

Wayanad district of Kerala is one of the high altitude and high rainfall regions of northern

Kerala, where the majority of livelihoods depend on agricultural activities. Recent changes in

global climate making a greater impact on the distribution of rainfall, so it’s important to

identify potential rainfall trends accurately. For the study, we have considered two gauging

stations like Mananthavady, and Vythiri for 33 years of annual rainfall data of all the months

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 5 -

and all the seasons (South-West Monsoon; SWM (June to September), North East Monsoon;

NEM (October to November), winter (December to February), and summer (March to May)).

The statistical trend analysis of monthly, seasonal and annual rainfall (mm) from 1986 to 2018

is presented in Table 1. Wald-Wolfowitz Test of randomness results indicates January (2.83),

February (1.98), March (1.98), and April (2.41) in the Manthawadi region, January (3.26),

February (2.40), and November (1.98) rainfall in Vettari showing Z-statistic value more than

Z-critical value (1.96) for 5 % level of significance and indicates the significant dependency of

the lag period. Block bootstrapping in Mann–Kendall trend test results confirms that Wayanad

is under a downward rainfall trend in almost all the months, seasons, and annual rainfall. Where

both the stations of the Wayanad region showing a significant downward trend for Post

monsoon season rainfall. An average every year 14 mm post-monsoon rainfall is reducing in

Wayanad (Mananthavady (-8.56 mm), Vythiri (-10.94 mm), and Ambalavayal (-8.50 mm)).

Finally, when we compared the last 33-year northwest rainfall, even the number of rainy days

(> 2.5 mm/day) in post-monsoon also taken the negative trend ((Mananthavady (Z=-1.75), and

Vythiri (Z=-1.42)). About 63 per cent reduction in the number of rainy days was observed

during last 10 years compared to previous past years. This has a significant effect crop

productivity especially on the Coffee Production in the Wayanad region, as Coffee is the

predominantly grown cash crop. Reduction in North-East monsoon increases the stress period

of coffee crop (reduction in moisture level at the root zone), which results in early maturity of

the crop (Awati et al, 2016). This stress along with summer showers create early flowering or

irregular flowering in Coffee. Establishment of new clearings is difficult without the

supplementary irrigation in case of no North-East Monsoon. Fear of Mealy bugs and sucking

pests infestation will be more if there is a reduction in N-E monsoon.

Table 1: Rainfall trend analysis for waynad region, Kerala

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 6 -

 WM-

test

MK- test MMK

test

Sen’s

Slope

WM-

test

MK- test MMK

test

Sen’s

Slope

 Mananthavady Vythiri

Jan 2.83** -1.17 -1.29 0.00 3.26** -0.76 -0.88 0.00

Feb 1.98* -1.19 -1.23 0.00 2.40* -1.30 -1.16 0.00

Mar 1.98* -0.11 0.10 0.00 1.56 0.23 0.27 0.074

Apr 2.41** -1.79 -1.84 -3.34 0.14 -1.18 -1.29 -4.92

May 1.13 0.07 -1.78 -0.25 0.57 -0.54 -0.367 -1.38

Jun 0.99 -0.29 -0.18 -2.9 0.99 -1.15 -0.76 -10.21

Jul 0.70 -0.33 -0.20 -2.75 1.84 -1.00 -0.90 -11.74

Aug 0.14 -0.29 -0.34 -2.04 0.71 -1.25 -1.08 -7.25

Sep 0.70 0.17 0.20 0.68 0.71 -0.31 -0.30 -2.30

Oct 1.84 -1.78 -1.67 -6.03 0.14 -1.60 -1.69 -7.72

Nov 0.15 -1.61 -1.64 -2.49 1.98* -2.05* -2.13* -3.71

Dec 0.70 -0.89 -0.97 -0.52 1.55 -1.56 -1.93 -3.25

SWM 0.28 0.01 0.05 0.00 0.71 -0.45 -0.37 -11.01

NEM 0.29 -2.06* -

1.98*

-8.56 1.84 -2.34* -2.15* -10.94

Winter 0.28 -1.14 -1.13 -0.96 1.56 -1.71 -2.04* -3.81

Summer 0.28 -0.99 -1.26 -0.28 0.14 -1.25 -1.23 -0.15

Annual 1.13 0.015 -0.01 0.01 0.71 -0.73 -0.623 -18.50

Conclusion

Recent changes in global climate making a greater impact on the distribution of weather series,

so it’s important to identify potential trends accurately. Modified Mann–Kendall test

outperform compare to Mann-Kendal test during the series under consideration exhibit

significant auto correlation.

Code for trend analysis

##Mann-Kendall Test for Trend in R

Data<-read.csv(file.choose(),header=TRUE)

install.packages("trend")

library(trend)

#####Mann-Kendall Test

mk.test(x, alternative = "two.sided")

#Magnitude of trend

#Sen's slope

sens.slope(x)

#Seasonal trend

datas<-read.csv(file.choose(),header = TRUE)

data<-ts(datas$Rainfall,start=c(1890,1),end = c(2008,12),frequency = 12)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 7 -

smk.test(data)

#Test for the Randomness

##Wallis and Moore phase-frequency test

wm.test(x)

#Modified Mankendal test

install.packages("modifiedmk")

library(modifiedmk)

#Mann-Kendall Test applied to Trend Free Pre-Whitened Time Series Data in Presence of

Serial Correlation Using Yue and Pion (2002) Approach

tfpwmk(x)

#Modified Mann-Kendall Test For Serially Correlated Data Using Hamed and Rao (1998)

Variance Correction Approach

mmkh(x)

Where x is the series under consideration for trend analysis

References:

Sanjeevaiah, S. H., Rudrappa, K. S., Lakshminarasappa, M. T., Huggi, L., Hanumanthaiah,

M. M., Venkatappa, S. D., ... & Sreeman, S. M. (2021). Understanding the Temporal

Variability of Rainfall for Estimating Agro-Climatic Onset of Cropping Season over

South Interior Karnataka, India. Agronomy, 11(6), 1135.

Jaiswal, R. K., Lohani, A. K., & Tiwari, H. L. (2015). Statistical analysis for change

detection and trend assessment in climatological parameters. Environmental

Processes, 2(4), 729-749.

Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall

records. Journal of hydrology, 58(1-2), 11-27.

Wallis, W. A., & Moore, G. H. (1941). A significance test for time series and other ordered

observations. In A Significance Test for Time Series and Other Ordered

Observations (pp. 1-67). NBER.

Yue, S., & Pilon, P. (2004). A comparison of the power of the t test, Mann-Kendall and

bootstrap tests for trend detection/Une comparaison de la puissance des tests t de

Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrological

Sciences Journal, 49(1), 21-37.

Yue, S., Pilon, P., Phinney, B., and Cavadias, G. (2002). The influence of autocorrelation

on the ability to detect trend in hydrological series. Hydrological Processes, 16(9):

1807–1829.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 8 -

Shpakova, R. N., Kusatov, K. I., & Mustafin, S. K. (2020, April). Spatiotemporal Trends

in Changes in the River Water Contents in the Sakha Republic (Yakutia). In IOP

Conference Series: Earth and Environmental Science (Vol. 459, No. 5, p. 052062). IOP

Publishing.

Elzopy, K. A., Chaturvedi, A. K., Chandran, K. M., Gopinath, G., & Surendran, U. (2021).

Trend analysis of long-term rainfall and temperature data for Ethiopia. South African

Geographical Journal, 103(3), 381-394.

W. A. Wallis and G. H. Moore (1941): A significance test for time series and other ordered

observations. Tech. Rep. 1. National Bureau of Economic Research. New York.

Ryberg, K. R., Hodgkins, G. A., & Dudley, R. W. (2020). Change points in annual peak

streamflows: Method comparisons and historical change points in the United

States. Journal of Hydrology, 583, 124307.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 9 -

Time Series Analysis for Abiotic Stress Management
Santosha Rathod, Naveena K, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi

Kumar, Prabhat Kumar

1.ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

2. Centre for Water Resources Development and Management (CWRDM), Kozhikode -

673571, Kerala, India.

Email: santosha.rathod@icar.org.in

1. Introduction:

Time series refers to an ordered sequence of values of a variable recorded at equally spaced

time intervals. The process of analysing such data to extract meaningful insights is called time

series analysis (TSA). The primary objective of time series modeling is to systematically study

the historical behaviour of a variable to identify underlying patterns, trends, and seasonality—

so that future values can be predicted. This makes time series forecasting a powerful tool for

decision-making, as it enables researchers and policymakers to anticipate upcoming events

based on past trends.

Time series analysis has been widely applied in fields like business, finance, economics,

meteorology, hydrology, and engineering. In agriculture, and particularly in abiotic stress

management, TSA plays a crucial role. Abiotic stresses such as drought, heat waves, cold

spells, salinity, and floods often show periodic or trend-based behaviour over time.

Understanding these patterns through time series forecasting allows for timely interventions,

resource planning, and early warning systems to safeguard crops and improve resilience. For

instance, forecasting future drought probabilities based on historical rainfall data, or predicting

heat stress periods during crop flowering stages, are critical applications. In such cases, time

series models such as ARIMA, SARIMA, Exponential Smoothing, and machine learning-

based models (for example, LSTM) are employed to capture both short- and long-term

dependencies in the data.

One of the essential properties of time series data is the dependence among successive

observations, which distinguishes it from random or cross-sectional data. The accuracy and

reliability of forecasts depend on both the quality and length of historical data available.

According to Box and Jenkins pioneers of classical time series modelling minimum of 50

observations is generally recommended for robust model development and validation.

mailto:santosha.rathod@icar.org.in

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 10 -

Thus, in the context of climate-resilient agriculture, TSA provides a scientific and data-driven

foundation to tackle abiotic challenges by enabling forecasting, preparedness, and adaptation

planning, ultimately contributing to more sustainable farming systems.

A time series that records the values of a single variable is referred to as a univariate time series, whereas

one that involves multiple variables is known as a multivariate time series. Time series data can be

categorized as either continuous or discrete. In a continuous time series, observations are captured at

every moment in time, while in a discrete time series, data points are collected at specific, separate time

intervals. Examples of continuous time series include temperature measurements, river flow rates, and

chemical concentrations. In discrete time series, observations are typically recorded at regular

intervals—such as hourly, daily, weekly, monthly, or annually. Although the observations occur at

discrete points, the variable itself is usually treated as continuous and measured on a real number scale.

Additionally, a continuous time series can be converted into a discrete one by aggregating data over

predefined time intervals.

Time Series Analysis (TSA) generally follows two main forecasting approaches. The first

involves predicting the present series based on the observed patterns in historical data, commonly

referred to as the extrapolation method. The second approach, known as the explanatory method,

estimates future outcomes by incorporating variables that influence the target phenomenon (Diebold

and Lopez, 1996). In essence, statistical forecasting is the process of approximating the likelihood of

future events based on available information. For example, in agriculture, farmers are generally

interested in aspects like production, demand, consumption, and price of an item, etc., and all

of these events, change with time. Statistical forecasting models are widely used for examining

behavior of such time series data. So, forecasting is needed in almost all sectors viz. business

production planning, multistage management decision analysis, staff scheduling, various

management problems, crop yield and acreage forecasting, etc.

One simple method of describing a series is that of classical decomposition. The

simplest and most basic approach to forecasting is the moving averages method, which assigns

equal weights to all observations in the selected time window. However, this method does not

differentiate between recent and older data points. To address this limitation, exponential

smoothing methods were introduced as an improved approach that assigns exponentially

decreasing weights to older observations, thereby giving more importance to recent data. These

methods were initially developed as recursive techniques without relying on any specific

assumptions regarding the distribution of the error terms.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 11 -

Over time, it has been observed that exponential smoothing methods are, in fact, special

cases of the more statistically rigorous Autoregressive Integrated Moving Average (ARIMA)

models. Among the classical time series models, ARIMA remains one of the most important

and widely applied due to its strong theoretical foundation and practical applicability.

The popularity of the ARIMA model is largely attributed to its linear statistical structure

and the well-known Box-Jenkins methodology for model identification, estimation, and

diagnostic checking (Box and Jenkins, 1970). For an extensive treatment of exponential

smoothing techniques, the work of Makridakis et al. (1998) provides valuable insights. A

practical guide to ARIMA modeling, including numerous case studies, is presented in Pankratz

(1983). Furthermore, a comprehensive and rigorous exposition of ARIMA and related time

series models is given in Box et al. (1994), which continues to serve as a foundational reference

in time series analysis.

2. Components of TS:

A fundamental approach to analyzing a time series is classical decomposition, which assumes

that the series can be broken down into four main components: trend, cyclical, seasonal, and

irregular variations. The trend refers to the long-term direction of a series—whether it

increases, decreases, or remains stable over time. For instance, population growth or housing

development in a city typically exhibits an upward trend, while mortality rates or epidemic

cases may show a downward trend. Seasonal variations are short-term, recurring fluctuations

that occur within a year, often driven by climate, weather, cultural customs, or traditions—such

as increased ice cream sales in summer or higher demand for woolen clothes in winter.

Understanding these patterns is essential for businesses, retailers, and producers to plan

effectively. Cyclical variations represent medium-term movements that repeat over extended

periods, often spanning two or more years. These are commonly observed in economic and

financial time series, such as the phases of the business cycle: prosperity, decline, depression,

and recovery. In contrast, irregular or random variations are unpredictable and non-repeating

disturbances caused by unforeseen events like wars, strikes, natural disasters, or political

upheavals. Since these fluctuations do not follow any specific pattern, there is no standard

statistical method to measure them. To account for the combined effects of these four

components, time series models are typically structured using either multiplicative or additive

forms

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 12 -

Multiplicative model: 𝑌(𝑡) = 𝑇(𝑡) ∗ 𝑆(𝑡) ∗ 𝐶(𝑡) ∗ 𝐼(𝑡)

Additive model: 𝑌(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝐶(𝑡) + 𝐼(𝑡)

Where, Y(t) is the original series, T(t) is the trend component, S(t) is the seasonal component,

C(t) is the cyclic component and I(t) is the irregular component. The multiplicative model of a

time series is based on the assumption that the four components—trend, cyclical, seasonal, and

irregular—are not necessarily independent and can influence one another. In contrast, the

additive model assumes that these components are independent and do not affect each other

directly.

2.1 Trend analysis

The trend analysis was done in three steps. The first step is to detect the presence of increasing

or decreasing trend using the nonparametric Mann-Kendall test, second step is estimation of

magnitude or slope of a linear trend with the nonparametric Sen’s Slope estimator, and third

one is to develop regression models.

Calculation of the Mann-Kendal test

The Mann-Kendall test statistic S is calculated using the formula that follows:

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

− 𝑥𝑖)

Where 𝑥𝑗 and 𝑥𝑖 are the annual values in years j and i, j>i respectively, and N is the number of

data points. The value of 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) is computed as follows:

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0

0 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

This statistic represents the number of positive differences minus the number of negative

differences for all the differences considered. For large samples (N>10), the test is conducted

using a normal approximation (Z statistics) with the mean and the variance as follows:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 13 -

𝐸[𝑆] = 0

𝑉𝑎𝑟(𝑆) =
1

18
[𝑁(𝑁 − 1)(2𝑁 + 5) −∑𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑞

𝑝=1

]

Here q is the number of tied (zero difference between compared values) groups, and tp is the

number of data values in the pth group. The values of S and VAR(S) are used to compute the

test statistic Z as follows

𝑍 =

{

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 > 0

0 𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 < 0

The presence of a statistically significant trend is evaluated using the Z value. A positive value

of Z indicates an upward trend and its negative value a downward trend. The statistic Z has a

normal distribution. To test for either an upward or downward monotone trend (a two-tailed

test) at α level of significance, H0 is rejected if the absolute value of Z is greater than Z1-α/2,

where Z1-α/2 is obtained from the standard normal cumulative distribution tables. The Z values

were tested at 0.05 level of significance.

Sen’s slope estimator

To estimate the true slope of an existing trend (as change per year) the Sen's nonparametric

method is used. The Sen’s method can be used in cases where the trend can be assumed to be

linear.

𝑓(𝑡) = 𝑄𝑡 + 𝐵

Where Q is the slope, B is a constant and t is time. To get the slope estimate Q, the slopes of

all data value pairs is first calculated using the equation:

𝑄𝑖 =
𝑥𝑗 − 𝑥𝑘

𝑗 − 𝑘

Where xj and xk are data values at time j and k (j>k) respectively. If there are n values xj in the

time series there will be as many as N = n(n-1)/2 slope estimates Qi. The Sen’s estimator of

slope is the median of these N values of Qi. The N values of Qi are ranked from the smallest to

the largest and the Sen’s estimator is

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 14 -

𝑄 = 𝑄
[
(𝑁+1)

2
]
 , if N is odd or 𝑄 =

1

2
(𝑄

[
𝑁

2
]
+ 𝑄

[
(𝑁+2)

2
]
) , if N is even.

To obtain an estimate of B in Equation f(t) the n values of differences xi – Qti are calculated.

The median of these values gives an estimate of B.

Modified Mann–Kendall test

the Mann-Kendall test is the commonly using statistical tools for testing monotonic upward or

downward trend of the variable of interest over time. The positive auto correlation in the series

will miss lead the trend results (Yue et al, 2004) from Mann-Kendal test. Mann-Kendall test

show significance results even though no trend in the series. The null hypothesis H0: there has

been no trend in given series was tested against there has been a trend in given series. the

hypothesis where were no trend, was rejected when the computed Z-transformed test Statistic

value was greater in absolute value than the critical value Z1-0.5α, at 95% level of significance.

Illustration: Trend analysis

The Manthawadi, station of waynad (11.8014°N, 76.0044°E) district considered for the study.

The daily rainfall data for the period 1987-2018 (33 years) is collected from India

Meteorological Department, Pune. The methods adopted to study the characteristics of rainfall

in this region are as follows: Mann–Kendall trend test (MK-test), Wald-Wolfowitz Test of

randomness (WWTR), Sen’s slope estimator and Block bootstrapping in Mann–Kendall trend

test (BBMK).

Results

The statistical trend analysis of monthly, seasonal and annual rainfall (mm) from 1986 to 2018

is presented in Table 1. The data of the 12 months were combined into four seasons, south-

west monsoon (June to September), northeast monsoon (October to November), winter

(December to February), and summer (March to May). Wald-Wolfowitz Test of randomness

results indicates January (2.83), February (1.98), March (1.98), and April (2.41) in the

Manthawadi region showing Z-statistic value more than Z-critical value (1.96) for 5 % level of

significance and indicates the significant dependency of the lag period. Block bootstrapping in

Mann–Kendall trend test results confirms that Wayanad is under a downward rainfall trend in

almost all the months, seasons, and annual rainfall.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 15 -

Table 1: Trend analysis of Manthawadi region

Randomness test MK- test BBMK

test

Sen’s

Slope

 Mananthavadi

Jan 2.83** -1.17 -1.29 0.00

Feb 1.98* -1.19 -1.23 0.00

Mar 1.98* -0.11 0.10 0.00

Apr 2.41** -1.79 -1.84 -3.34

May 1.13 0.07 -1.78 -0.25

Jun 0.99 -0.29 -0.18 -2.9

Jul 0.70 -0.33 -0.20 -2.75

Aug 0.14 -0.29 -0.34 -2.04

Sep 0.70 0.17 0.20 0.68

Oct 1.84 -1.78 -1.67 -6.03

Nov 0.15 -1.61 -1.64 -2.49

Dec 0.70 -0.89 -0.97 -0.52

Annual 1.13 0.015 -0.01 0.01

SW-Monsoon 0.28 0.01 0.05 0.00

Post-monsoon 0.29 -2.06* -1.98* -8.56

Winter 0.28 -1.14 -1.13 -0.96

Pre-monsoon 0.28 -0.99 -1.26 -0.28

Code for trend analysis

##Mann-Kendall Test for Trend in R

Data<-read.csv(file.choose(),header=TRUE)

install.packages("trend")

library(trend)

#####Mann-Kendall Test

mk.test(x, alternative = "two.sided")

#Magnitude of trend

#Sen's slope

sens.slope(x)

#Seasonal trend

datas<-read.csv(file.choose(),header = TRUE)

data<-ts(datas$Rainfall,start=c(1890,1),end = c(2008,12),frequency = 12)

smk.test(data)

#Test for the Randomness

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 16 -

##Wallis and Moore phase-frequency test

wm.test(x)

#Modified Mankendal test

install.packages("modifiedmk")

library(modifiedmk)

#Mann-Kendall Test applied to Trend Free Pre-Whitened Time Series Data in Presence of

Serial Correlation Using Yue and Pion (2002) Approach

tfpwmk(x)

#Modified Mann-Kendall Test For Serially Correlated Data Using Hamed and Rao (1998)

Variance Correction Approach

mmkh(x)

Change-point detection

#Pettitt's test

pettitt.test(x)

##Buishand Range Test

br.test(x)

#Buishand U Test

bu.test(x)

#Standard Normal Homogeinity Test

snh.test(x)

3. Moving averages and Exponential smoothing methods

3.1. Moving Average (MA)

3.1.1. Single Moving averages: Moving average is a numerical average of last N data points.

In general the MA is defined as follows;

𝑀𝑡
[1] =

𝑌𝑡 + 𝑌𝑡−1 +⋯+ 𝑌𝑡−𝑁+1
𝑁

Where, Yt is the observed time series at time t, At each successive time period the most recent

observation is included and the farthest observation is excluded for computing the average.

Hence the name ‘moving’ averages.

3.1.2: Double moving averages

The simple moving average is intended for data of constant and no trend nature. If the data

have a linear or quadratic trend, the simple moving average will be misleading. In order to

correct for the bias and develop an improved forecasting equation, the double moving average

can be calculated. To calculate this, simply treat the single moving average time as individual

data points and obtain a moving average of these averages.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 17 -

3.2. Exponential Smoothing methods

3.2.1: Simple exponential smoothing (SES)

Simple exponential smoothing (Brown 1959) is best applied to time series that do not exhibit

trend and do not exhibit seasonality. Its only smoothing parameter is α. The smoothing

parameter α is used to control the speed which the updated forecast will adapt to local level (or

mean) of the time series. This is also known as single exponential smoothing. It is used for

short-range forecasting. The model assumes that the data fluctuates around a reasonably stable

mean (no trend or consistent pattern of growth).

𝐹𝑡+1 = 𝐹𝑡 + 𝛼(𝑌𝑡 − 𝐹𝑡)

𝐹𝑡+1 is the forecast of current period, based on forecast of most recent period 𝐹𝑡 and smoothing

constant 𝛼. We have to choose the smoothing constant 𝛼 in such a way that the model should

yield the lowest MSE value.

3.2.2: Double Exponential Smoothing (Holt)

It is best applied to time series that have a linear trend but does not exhibit seasonal behavior.

The smoothing constant α is used to control speed of adaptation to local level and a second

smoothing constant β is introduced to control degree of local trend carried through to multi-

step-ahead forecast periods. Holt's model is more general than Brown's model because its

smoothing parameters (level and trend) are not constrained by each other's values as in case

with Brown's One-parameter Linear Trend Method. It is also known as Holt’s Exponential

smoothing with Additive Trend.

3.2.3: Triple Exponential Smoothing (Winters)

The method under consideration is particularly recommended when the time series data

exhibits seasonality. It is built upon three core smoothing equations—one each for the level,

the trend, and the seasonal component. While it closely resembles Holt’s method, it introduces

an additional equation to explicitly handle the seasonal variation. In fact, there exist two

versions of Winter’s method, depending on the form of seasonality being modeled: the additive

version for constant seasonal fluctuations and the multiplicative version for seasonality that

varies with the level of the series.

4. Stationarity process of TS:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 18 -

A fundamental aspect of time series analysis is to assess whether the data is stationary. A time

series is considered stationary when its statistical properties—such as the mean, variance, and

auto-covariance at various lags—remain constant over time, regardless of the specific time

point under consideration (Fig. 1). Stationarity ensures that the model's parameters remain

stable and reliable for forecasting.

Figure 1: Sample path of a stationary process

Moreover, the time series {rt} is said to be strictly stationary if the joint distribution of rt1 ,...,

rtk is identical to that of rt1-s ,..., rtk-s for all choice of t1, t2,., tk and all choice of time lag s.

In other words, strict stationarity requires that the joint distribution of rt1 ,..., rtk is constant

under time shift. A weaker version of stationarity is often assumed. A time series {rt} is weakly

stationary if both the mean of rt and the covariance between rt and rt−s are time-invariant,

where s is an arbitrary integer. More specifically, {rt} is weakly stationary if:

1) E(rt) = µ, which is a constant , for all t .

2) Cov(rt , rt−s) = γs, which only depends on all time t and lag s .

A time series is said to exhibits non-stationarity if the underlying generating process does not

have a constant mean and/or a constant variance. As an example, the series given below

displays considerable variation, especially since 2001, and a stationary model does not seem to

be reasonable (Fig. 2).

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 19 -

Figure 2: Sample path of a non-stationary process

A statistical test for stationarity is the most widely used Dickey Fuller test. To carry out the

test, estimate by OLS the regression model. If the AR parameter is nearly zero the original

series needs differencing and if AR parameter is less than zero then series is said to be already

stationary.

5. Autocorrelation Function (ACF)

One of the most essential tools for analyzing dependence in a time series is the sample

autocorrelation function. The correlation coefficient between two random variables, X and Y,

indicates the strength of their linear relationship and always lies between -1 and 1. When a time

series is assumed to be stationary, the autocorrelation function pk for various lags k=1,2,…can

be estimated by calculating the sample correlation between observations that are k time units

apart. Specifically, the correlation between 𝑌𝑡−𝑘 and 𝑌𝑡−𝑘 is referred to as the lag-k

autocorrelation or serial correlation coefficient, and under the assumption of weak stationarity,

it is defined as follows:

),cov(,,......2,1;

)(

)()(

02

1

1
kttk

k

T

t

t

T

kt

ktt

k YYwherekfor

YY

YYYY

−

−

+−

−

===

−

−−

=











Since k is a correlation, it has the simple properties:

a) -1 ≤ k ≤ 1

b) k = k−

c) 0 = 1

5.1. Partial Autocorrelation Function (PACF)

Partial autocorrelations are used to measure the degree of association between Yt and Yt-k when

the y-effects at other time lags 1,2,3,…,k-1 are removed.

6. Autoregressive (AR) Model

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 20 -

An observed time series 𝑌𝑡 can be elucidate by linear function of its previous

observation, 𝑌𝑡−1 and some unexplainable random error 𝜀𝑡. Let us consider equally spaced

time series 𝑌𝑡, 𝑌𝑡−1, 𝑌𝑡−2 …, over an equal period of time say t, t-1, t-2, …, then 𝑌𝑡 can be

defined as;

 𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 +⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝜀𝑡

If we represent the series in Backshift operator format, then it becomes

 ∅(𝐵) = 1 − ∅1(𝐵) − ∅2𝐵
2 −⋯− ∅𝑝𝐵

𝑝

Where, B is the backshift 𝐵𝑌𝑡 = 𝑌𝑡−1 then the AR model can be written as ∅(𝐵)𝑌𝑡 = 𝜀𝑡.

6.1. Moving Average (MA) Model

Another important model of great practical utility in the frame work of time series is finite

moving average model. The MA (q) model is defined as;

 𝑌𝑡 = 𝜀𝑡−𝜃1𝜀𝑡−1−𝜃2𝜀𝑡−2 −⋯−𝜃𝑞𝜀𝑡−𝑞

In terms of backshift operator, the MA model of order q is given as follows;

 𝜃(𝐵) = 1 − 𝜃1(𝐵) − 𝜃2𝐵
2 −⋯− 𝜃𝑞𝐵

𝑞

Where B is the backshift operator and the moving average model can be expresses as;

 𝑌𝑡 = 𝜃(𝐵)𝜀𝑡

6.2. Autoregressive Moving Average (ARMA) model

In order to obtain the higher efficiency and greater flexibility in modeling we combine

both autoregressive and moving average processes together. These models are called as "mixed

models" and are represented as ARMA (p,q) models

 𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 +⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝜀𝑡−𝜃1𝜀𝑡−1−𝜃2𝜀𝑡−2 −⋯−𝜃𝑞𝜀𝑡−𝑞

 Generally, in Backshift operator it is expressed as follows;

 ∅(𝐵)𝑌𝑡 = 𝜃(𝐵)𝜀𝑡

6.3. Autoregressive Integrated Moving Average (ARIMA) model

ARIMA is one of the most established methods for analyzing non-stationary time

series. Unlike regression models, ARIMA explains a time series using its own past (lagged)

values and random error terms. These models are often referred to as mixed models because

they combine both autoregressive (AR) and moving average (MA) components. Although

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 21 -

mixed models can make the forecasting process more complex, they generally offer more

accurate predictions. In contrast, pure models consist solely of either AR or MA components,

but not both. The integrated (I) part of ARIMA refers to the differencing process used to

convert a non-stationary series into a stationary one, enabling forecasting. An ARIMA model

is typically denoted as ARIMA(p, d, q) and is expressed in the following form:

 ∅(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡

 𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 +⋯+ ∅𝑝𝑌𝑡−𝑝 + 𝜀𝑡−𝜃1𝜀𝑡−1−𝜃2𝜀𝑡−2 −⋯−𝜃𝑞𝜀𝑡−𝑞

𝑌𝑡 is the time series, ∅𝑖and θj are model parameters, 𝜀𝑡 is random error, p is number of

autoregressive terms, q is number of moving terms and B is the backshift operator such that,

𝐵𝑌𝑡 = 𝑌𝑡−1 (Box and Jenkins 1994, Brockwell and Davis 1996).

The main stages in setting up a Box-Jenkins forecasting models are described below:

6.3.1. Identification:

The initial and most crucial step in time series modeling is to check whether the series

is stationary, as most estimation techniques are valid only for stationary data. If the series is

found to be non-stationary, it must first be transformed into a stationary form. Once stationarity

is achieved, the next step is to identify initial estimates for the orders of seasonal and non-

seasonal parameters—namely, p, q for non-seasonal and P, Q for seasonal components. These

initial values can be suggested by examining the significance of autocorrelation and partial

autocorrelation coefficients. For instance, if the second-order autocorrelation is significant, an

AR(2), MA(2), or ARMA(2) model might be considered as a starting point. However, this is

not a strict rule, since sample autocorrelations can be unreliable approximations of their

population counterparts. Despite this, they serve as useful starting estimates, with the final

model determined through an iterative process. The estimated ACF (Autocorrelation Function)

and PACF (Partial Autocorrelation Function) provide a straightforward way to explore

statistical relationships within the data, helping to identify underlying patterns and

dependencies. This relationship is captured mathematically through an equation. The

fundamental idea behind this technique is that every stochastic process operating over time has

its own characteristic Autocorrelation Function (ACF) and Partial Autocorrelation Function

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 22 -

(PACF). Since any observed time series is considered a specific realization of an underlying

stochastic process, its theoretical ACF and PACF should closely resemble the estimated ACF

and PACF derived from the actual data.

6.3.2. Estimation of parameters

During the estimation stage of time series modeling, the parameters of the identified

model are computed. Typically, the method of least squares is employed, which minimizes the

sum of squared residuals to determine the best-fitting coefficients. At this stage, it is also

essential to verify the stationarity and invertibility of the model based on the estimated

parameters. Additionally, model adequacy is assessed to ensure that the selected model fits the

data well. The significance of each estimated coefficient is evaluated through statistical testing,

as each has a sampling distribution and an associated standard error. Most ARIMA estimation

procedures include automatic hypothesis testing to determine whether a coefficient is

significantly different from zero. However, when coefficients are highly correlated, the

resulting parameter estimates may be unreliable. To assess the quality of the model fit,

performance metrics such as Root Mean Square Error (RMSE), Mean Absolute Percentage

Error (MAPE), and others are calculated.

6.3.3. Diagnostic checking

Different models can be obtained for various combinations of AR and MA individually

and collectively. The best model is obtained with following diagnostics.

(a) Low Akaike Information Criteria (AIC)/ Bayesian Information Criteria

(BIC)/Schwarz-Bayesian Information Criteria (SBC)

AIC is given by (-2 log L + 2 m) where m=p+ q+ P+ Q and L is the likelihood function.

Since -2 log L is approximately equal to {n (1+log 2π) + n log σ2} where σ2 is the model MSE,

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 23 -

Thus AIC can be written as AIC={n (1+log 2π) + n log σ2 + 2 m} and because first term in this

equation is a constant, it is usually omitted while comparing between models. As an alternative

to AIC, sometimes SBC is also used which is given by SBC = log σ2 + (m log n)/n.

(b) Plot of residual ACF

After fitting a suitable ARIMA model, the goodness of fit can be assessed by examining

the autocorrelation function (ACF) of the model’s residuals. If the majority of the residual

autocorrelation coefficients fall within the range of ±1.96/√N—where N is the total number of

observations used in the model—it suggests that the residuals behave like white noise. This

indicates that the model has effectively captured the structure of the data and is considered a

good fit.

(c) Non-significance of auto correlations of residuals via Portmonteau tests (Q-tests

based on Chi-square statistics)-Box-Pierce or Ljung-Box texts

Once a tentative model has been applied to the data, it is essential to carry out diagnostic

checks to evaluate the model’s adequacy and identify any areas for potential improvement. A

common approach to this is by analyzing the residuals of the model. One effective method for

assessing the overall fit is through the use of the Box-Pierce statistic (Q), which is based on the

autocorrelations of the residuals. This statistic approximately follows a Chi-square distribution

and provides a quantitative measure to determine how well the model captures the underlying

structure of the data. It is calculated using the following formula:

Q=n ∑ r2
 (j)

In this context, the summation runs from 1 to k, where k is the maximum lag

considered—typically chosen around 20—and n is the number of observations in the time

series. The term r(j) represents the estimated autocorrelation at lag j. The Box-Pierce Q statistic

follows a Chi-square distribution with (k − m − 1) degrees of freedom, where m is the number

of parameters estimated in the model. A refined version of this test is the Ljung–Box statistic,

calculated as:

q= n (n+2) ∑ r2
 (j)/ (n-j)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 24 -

This Q statistic is then compared with critical values from the Chi-square distribution.

If the model is correctly specified, the residuals should exhibit no autocorrelation, resulting in

a small Q value and a large associated p-value. Conversely, a significant Q value suggests that

the residuals are not white noise, indicating that the model may not adequately fit the data.

7. Forecasting

The final model is used to generate predictions about the future values and then calculate the

errors for the values obtained by developed model.

8. Illustration: To build the ARIMA Model

Yearly data on total oilseed production (in million tonnes) in India from 1950–51 to 2015–16

were obtained from the agricultural statistics published by the Reserve Bank of India (RBI),

Government of India (RBI Statistics, 2016). Data from 1950–51 to 2010–11 were used for

model development, while the data from 2011–12 to 2015–16 were utilized for validating the

forecasting performance of the models. The summary statistics and time series plot

corresponding to the dataset are presented in Table 2 and Figure 3, respectively.

Fig.3: Time series plot of Oilseed production of India

The ARIMA model has been built for oilseed production of India. The original time series was

found to be non-stationary, so first differencing was done to make the stationary series time

series (Figure 4).

0

50

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

2
…

2
…

2
…

2
…

2
…

2
…

2
…

2
…P
ro

d
u
ct

io

n
 (

M
T

)

Year

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 25 -

Fig. 4. ACF and PACF time series Oilseed production of India

The selected model, ARIMA(1,1,0), was determined to be appropriate based on the analysis of

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots (Figure 3).

A residual autocorrelation check for the fitted ARIMA model applied to the mango production

time series revealed that the residuals were non-autocorrelated, as indicated by a Chi-square

test p-value of 0.45, confirming the adequacy of the model.

R code for ARIMA model

library(forecast)

library(tseries)

ye=read.table(file="clipboard",header=TRUE) ## import the data

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 26 -

ye.ts <- ts(ye, start=1890, end=2008, frequency=1) ## define into time series frame work

plot.ts(ye.ts, col='blue', pch=2, lwd=3) ##plot the series

acf(ye.ts,lag.max = 40,col='red', pch=2, lwd=3) ## plot acf and pacf

pacf(ye.ts,lag.max = 40,col='red', pch=2, lwd=3)

stationarity=adf.test(ye.ts) ## check for stationarity

stationarity

ye.training=ye.ts[1:100] ## devide the data into training and testing set

ye.testing=ye.ts[101:119]

arima1=arima(ye.training, order=c(1,0,1),include.mean = TRUE) ## ARIMA fitting

arima1

arima1=arima(ye.training, order=c(1,0,1),include.mean = TRUE) ##

install the package forecast

ye.fit=auto.arima(ye.training) ## auto fitting

ye.fit

res=arima1$residuals

res_test=Box.test(res, lag = 1, type = c("Box-Pierce", "Ljung-Box"), fitdf = 0) ##diangnostic

checking

res_test

accuracy(arima1)

fcast=forecast(arima1, h=19)

fcast

fitted.test1=data.frame(fcast) ##forecast the out of sample

fitted.test=fitted.test1[,1]

DMwR::regr.eval(ye.testing, fitted.test)

9. Suggested Readings

Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. (1994). Time series analysis: Forecasting and

control, Pearson Education, Delhi.

Makridakis, S., Wheelwright, S.C. and Hyndman, R.J. (1998). Forecasting: Methods and

Applications, John Wiley, New York.

Pankratz, A. (1983). Forecasting with univariate Box – Jenkins models: concepts and cases,

New york: John Wiley & Sins.

Chris Chatfield, C. (2003). The Analysis of Time Series: An Introduction, Sixth Edition.

Chapman & Hall/CRC Texts in Statistical Science.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 27 -

ARCH Family of Models

Achal Lama1*, K N Singh1 and Bishal Gurung2

1ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012
2North-Eastern Hill University, Shillong-793022

Email: achallama.iasri@icar.org.in

1. Introduction

Time series analysis involves studying observations that are recorded sequentially over time,

where the temporal order is essential, making time series data inherently dependent. These

observations can be gathered at various frequencies such as hourly, daily, weekly, monthly, or

annually, depending on the nature of the application. A time series is typically represented

using notations like {Xt} or {Yt}, where t = 1, 2, ..., T represents the time index for a series of

length T. In statistical terms, a time series is treated as a realization from an underlying

stochastic process, and efforts are directed toward understanding the probabilistic law

governing such processes. This understanding facilitates insight into the dynamics of the series,

enables forecasting of future values, and helps guide interventions aimed at influencing future

behavior.

Given the finite nature of observed data, multiple stochastic processes can theoretically explain

the same dataset. However, only a subset of these processes are both statistically plausible and

meaningfully interpretable. Therefore, to make inference tractable, one typically imposes

structural assumptions by selecting a suitable family of probability models. This step is called

modelling, while the selection of the most appropriate model within that family and estimation

of its parameters is referred to as statistical inference. When the model structure is fully

specified except for a finite set of parameters, it is termed a parametric model. In contrast,

nonparametric models allow for greater flexibility, where the model form may not be

completely specified or may involve parameters from an infinite-dimensional space.

Effective time series analysis hinges on selecting appropriate statistical models that balance

interpretability, simplicity, and feasibility. A good model should adequately reflect the

underlying physical law governing the data without being overly complex. The chosen model

family should be broad enough to include the true data-generating process but not so broad that

parameter estimation becomes unreliable. During the modelling process, it is important first to

identify key features and patterns in the data and then select a model that captures those

characteristics. Once parameters are estimated, the adequacy of the model fit must be verified,

and refinements may be made if necessary. It is also important to note that model suitability

depends heavily on the goal of the analysis—for example, a model that provides a good fit and

interpretation may not necessarily be ideal for forecasting purposes.

This write-up aims to provide a foundational understanding of time series analysis. It offers an

overview of both linear and nonlinear time series models, with a focus on those within the

ARMA framework. It also covers commonly used parametric nonlinear models such as the

mailto:achallama.iasri@icar.org.in

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 28 -

Autoregressive Conditional Heteroscedastic (ARCH) model and its generalized form,

GARCH. For a more comprehensive treatment of these models, readers may refer to Fan and

Yao (2003). Finally, this document includes R code examples using real datasets to

demonstrate the application and interpretation of both linear and nonlinear time series models

for improved understanding and practical use.

2. Linear Time Series Models

The most widely used class of linear time series models is the Autoregressive Moving Average

(ARMA) family, which encompasses both the purely Autoregressive (AR) and Moving

Average (MA) models as special cases. These models are extensively applied to represent

linear dynamic behavior in time series data, as they effectively capture the linear relationships

among lagged observations. ARMA models provide a robust framework for analyzing and

forecasting time-dependent phenomena by incorporating past values and past errors. A

particularly important extension of ARMA models is the Autoregressive Integrated Moving

Average (ARIMA) model. ARIMA models generalize ARMA processes to handle non-

stationary data by incorporating a differencing component, thereby making them especially

useful in practical applications where time series often exhibit trends or other forms of non-

stationarity. The ARIMA class includes stationary ARMA processes as a subset and is widely

adopted for its versatility and forecasting power. We have tried to briefly introduce these linear

models in the subsequent sub-sections.

2.1 Autoregressive (AR) Model

A stochastic model that can be extremely useful in the representation of certain practically

occurring series is the autoregressive model. In this model, current value of the process is

expressed as a finite, linear aggregate of previous values of the process and a shock t . Let us

denote the values of a process at equally spaced time epochs , 1, 2,...t t t− − by
1 2, , ,...t t ty y y− −

then ty can be described as

1 1 2 2t t t p t p ty y y y   − − −= + + + +

If we define an autoregressive operator of order p by

() 2

1 21 p

pB B B B   = − − − −

where B is the backshift operator such that Byt = yt−1 , autoregressive model can be written as

(B) yt = t .

2.2 Moving Average (MA) Model

Another kind of model of great practical importance in the representation of observed time-

series is finite moving average process. MA (q) model is defined as

1 1 2 2t t t t q t qy       − − −= − − − −

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 29 -

If we define a moving average operator of order q by

() 2

1 21 q

qB B B B   = − − − −

where B is the backshift operator such that Byt = yt−1 , moving average model can be written

as yt = (B)t .

2.3 Autoregressive Moving Average (ARMA) Model

To achieve greater flexibility in fitting of actual time-series data, it is sometimes advantageous

to include both autoregressive and moving average processes. This leads to mixed

autoregressive-moving average model

1 1 2 2 1 1 2 2t t t p t p t t t q t qy y y y         − − − − − −= + + + + − − −

or

(B) yt = (B)t

and is written as ARMA(p, q). In practice, it is quite often adequate representation of actually

occurring stationary time-series can be obtained with autoregressive, moving average, or mixed

models, in which p and q are not greater than 2.

2.4 Autoregressive Integrated Moving Average (ARIMA) Model

A generalization of ARMA models which incorporates a wide class of non-stationary time-

series is obtained by introducing the differencing into the model. The simplest example of a

non-stationary process which reduces to a stationary one after differencing is Random Walk.

A process { yt } is said to follow an Integrated ARMA model, denoted by ARIMA (p, d, q), if

d yt = (1 − B)d t is ARMA (p, q). The model is written as

()() ()1
d

t tB B y B  − =

t
are assumed to be independently and identically distributed with a mean zero and a constant

variance of 2 .

3. Non-linear models: ARCH and GARCH models

After the dominance of the ARIMA model for over two decades, the need of such model was

felt which could predict with varying variance of the error term. The solution was provided by

Engle (1982) when he developed ARCH model to estimate the mean and variance of the United

Kingdom inflation. This model has few interesting characteristics; it models the conditional

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 30 -

variance as the square of the function of the previous error term and assumes the unconditional

variance to be constant. Along with the ARCH models can model heavy tail data which are

common in financial market. Besides these, Bera and Higgins (1993) pointed out that ARCH

models are easy and simple to handle, can take care of clustered errors, non-linearity and

importantly takes care of changes in the econometrician’s ability to forecast.

The ARCH (q) model for the series is defined by specifying the conditional distribution

of given the information available up to time t −1. Let denote this information. ARCH (q)

model for the series is given by

 ()t1tt 0,hN~|ψε −
 

=

−+=
q

i

itit aah
1

2

0 

where, 0a0  , 0ai  , for all i and 
=


q

1i

i 1a are required to be satisfied to ensure non-

negativity and finite unconditional variance of stationary series. Bollerslev (1986) and

Taylor (1986) proposed the Generalized ARCH (GARCH) model independently of each other,

in which conditional variance is also a linear function of its own lags and has the following

form

2/1

ttt h =
 (1)

where t ~ N (0,1). A sufficient condition for the conditional variance to be positive is

p,...2,1,j0,bq.,...2,1,i0,a0,a ji0 ==

The GARCH (p, q) process is weakly stationary if and only if

. 1ba
p

1j

j

q

1i

i +
==

The conditional variance defined by (1) has the property that the unconditional autocorrelation

function of 2

t ; if it exists, can decay slowly. For the ARCH family, the decay rate is too rapid

compared to what is typically observed in financial time-series, unless the maximum lag q is

long. As (1) is a more parsimonious model of the conditional variance than a high-order ARCH

model, most users prefer it to the simpler ARCH alternative. The most popular GARCH model

in applications is the GARCH (1,1) model.

Step 1: Determine whether the time series is stationary.

 t

 t

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 31 -

Before applying any time series model, it is essential to ensure that the series under analysis is

stationary. A stationary time series is characterized by constant statistical properties over time,

such as mean, variance, and autocorrelation structure. Stationarity implies that the underlying

process generating the data does not change with time, which is a fundamental assumption for

many time series models, including ARIMA.

Preliminary detection of stationarity can be done visually by plotting the raw data, as well as

examining the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)

plots. However, to statistically verify the presence of stationarity, formal tests such as the

Dickey-Fuller test, Augmented Dickey-Fuller (ADF) test, Phillips-Perron test, and the KPSS

test (developed by Kwiatkowski, Phillips, Schmidt, and Shin) are widely employed. These tests

help determine whether differencing or other transformations are needed to make the series

stationary before modeling.

Step 2: Identify the model.

Once the time series has been rendered stationary, the next step involves identifying an

appropriate mean model, typically using the Autoregressive Integrated Moving Average

(ARIMA) framework. The ARIMA model, denoted as ARIMA(p, d, q), is specified by

determining three key parameters:

• p, the order of the autoregressive (AR) component,

• d, the order of differencing required to achieve stationarity, and

• q, the order of the moving average (MA) component.

The values of p and q are selected based on the Autocorrelation Function (ACF) and Partial

Autocorrelation Function (PACF) plots of the stationary series. Specifically, the PACF plot is

used to identify the order of the AR term (p), while the ACF plot helps in identifying the order

of the MA term (q). The parameter d reflects the number of differencing operations applied to

the original series to induce stationarity.

Step 3: Estimate the model parameters and diagnostic checking.

Once a few tentative models have been identified, the estimation of model parameters is carried

out using standard statistical procedures. Typically, the Maximum Likelihood Estimation

(MLE) method is employed, which estimates parameters by maximizing the likelihood

function or, equivalently, by minimizing an overall measure of forecast errors. This stage

primarily aims to assess whether the assumptions made regarding the error structure of the

model are satisfied. To validate this, diagnostic checking is performed, most commonly using

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 32 -

the Portmanteau test (such as the Box–Pierce or Ljung–Box test). This test examines whether

the residuals from the fitted model behave like white noise—that is, they are uncorrelated and

have a constant variance over time. The null hypothesis for the test states that the residuals

constitute white noise, and rejecting it would indicate that the model may be inadequate and

require re-specification.

 The Ljung-Box statistic is given by:

1 2

1

(2) ()
h

k

k

Q n n n k r−

=

= + −

where, h is the maximum lag, n is the number of observations, k is the number of parameters

in the model. If the data are white noise, the Ljung-Box Q statistics has a chi-square distribution

with (h-k) degrees of freedom.

Step 4: Select the most suitable ARIMA model

The most suitable ARIMA model is selected using the smallest Akaike Information Criterion

(AIC) or Schwarz-Bayesian Criterion (SBC). AIC is given by

 AIC = (−2log L + 2m)

where, m= p+q and L is the likelihood function. SBC is also used as an alternative to AIC

which is given by

2log (log) /SBC m n n= +

If the model is not adequate, a new tentative model should be identified, which is again

followed by the parameter estimation and model verification. Diagnostic information may help

suggest alternative model(s). The steps of model building process are typically repeated several

times until a satisfactory mean model is finally selected. The final model can then be used for

prediction purposes.

Step 5: Determination of residuals and heteroscedasticity test.

After finding the mean model now the residuals are to be determined. And we create a new

variable called ‘rsquare’ by squaring the residuals. Then the ACF and PACF values of the

‘rsquare’ are determined and the lags in which these values are found to be significant are

identified. The test for heteroscedasticity is done at identified significant lags. The test

employed is the ARCH-LM test.

Step 6: Residuals and diagnostic checking.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 33 -

The residuals obtained from the mean model used for fitting the different GARCH models were

squared and stored in a new variable called ‘esquare’. As already mentioned previously, the

diagnostic tests are employed to check whether the residuals are white noise or not.

Step 7: Estimation of parameters.

The parameters of the obtained model are estimated using method of maximum likelihood

(MLE). And then forecasting is done using the selecting model.

5. Illustration

In this illustration Cotlook A index data is used and was collected from the commodity price

bulletin, published by the United Nations Convention of Trade and Development (UNCTAD).

The series contains 360 data pints, 346 data points are used for modelling and remaining 14

points for forecasting. At first the ARIMA model was applied to the data set and on

unsatisfactory performance of the model, the GARCH model was used.

5.1 Fitting of the Cotlook A index

Various combinations of the ARIMA models were tried, among all, the AR (1) model had

minimum AIC and BIC values. The AIC value for fitted GARCH model has been found to be

minimum when the mean equation depends on two recent pasts only. Investigating the

autocorrelation function (Acf) of squared residuals of AR (2) model, it is found that the Acf

and Pacf are maximum at lag 3, which is 0.226 and 0.221 respectively. But if we go for AR

(2)-ARCH (3) model, a large number of parameters are needed to be estimated. So, to get a

parsimonious model, the AR (2)-GARCH (1, 1) model is selected.

The mean and conditional variance for fitted AR (2)-GARCH (1, 1) model is computed as

follows:

 yt = 141.9264 –1.3905 yt-1+ 0.4538 yt-2 + t

 (3.94) (0.05) (0.05)

where

t
2/1

tt h  = ,

and ht satisfies the variance equation

ht = 8.470 + 0.208 2

1−t + 0.215 ht-1

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 34 -

 (1.97) (0.09) (0.079)

The values within brackets denote corresponding standard errors of the estimates. The AIC

value, for fitted GARCH model is 2288.88.

Table 1. Forecast of the Cotlook A index series

MONTH
ACTUAL

VALUE

FORECAST

ARIMA(1,1,0)

FORECAST

AR(2)-

GARCH(1,1)

Feb-11 469.98 408.34(8.30) 389.59(26.46)

Mar-11 506.34 416.47(15.56) 371.55(25.74)

Apr-11 477.56 421.40(22.35) 348.54(25.05)

May-11 364.91 424.53(28.55) 324.69(24.39)

Jun-11 317.75 426.66(34.17) 301.98(23.75)

Jul-11 268.96 428.23(39.29) 281.25(23.13)

Aug-11 251.55 429.49(43.97) 262.76(22.54)

Sep-11 257.63 430.57(48.29) 246.50(21.97)

Oct-11 243.85 431.55(52.30) 232.32(21.42)

Nov-11 230.78 432.48(56.05) 220.01(20.90)

Dec-11 210.43 433.37(59.58) 209.35(20.39)

Jan-12 222.91 434.25(54.45) 200.15(19.91)

Feb-12 222.12 435.12(57.13) 192.21(19.44)

Mar-12 219.36 435.99(59.68) 185.37(19.01)

Table 2. Forecast evaluation of the Cotlook A index series

MODEL RMSE RMAPE (%)

ARIMA(1,1,0) 44.03 60.72

AR(2)-GARCH(1,1) 15.38 9.36

6. R code for analysing a time series data using ARCH family of models

library(“tseries”)

library(“forecast”)

library(“fgarch”)

setwd("C:/Users/Achal/Desktop") # Setting of the work directory

data<-read.table("bishal.txt") # Importing data

datats<-ts(data,frequency=12,start=c(1982,4)) # Converting data set into time series

plot.ts(datats) # Plot of the data set

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 35 -

adf.test(datats) # Test for stationarity

diffdatats<-diff(datats,differences=1) # Differencing the series

datatsacf<-acf(datats,lag.max=12) # Obtaining the ACF plot

datapacf<-pacf(datats,lag.max=12) # Obtaining the PACF plot

auto.arima(diffdatats) # Finding the order of ARIMA model

datatsarima<-arima(diffdatats,order=c(1,0,1),include.mean=TRUE) # Fitting of ARIMA

model

forearimadatats<-forecast.Arima(datatsarima,h=12) # Forecasting using ARIMA model

plot.forecast(forearimadatats) # Plot of the forecast

residualarima<-resid(datatsarima) # Obtaining residuals

archTest(residualarima,lag=12) # Test for heteroscedascity

Fitting of AR-GARCH model

garchdatats<-garchFit(formula = ~ arma(2)+garch(1, 1), data = datats, cond.dist = c("norm"),

include.mean = TRUE, include.delta = NULL, include.skew = NULL, include.shape = NULL,

leverage = NULL, trace = TRUE,algorithm = c("nlminb"))

Forecasting using AR-GARCH model

forecastgarch<-predict(garchdatats, n.ahead = 12, trace = FALSE, mse = c("uncond"),

plot=FALSE, nx=NULL, crit_val=NULL, conf=NULL)

plot.ts(forecastgarch) # Plot of the forecast

Bibliography:

Bera, A. K., and Higgins, M. L. (1993), ARCH Models: Properties, Estimation and Testing,

Journal of Economic Survey, 7, 307-366.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of

Econometrics, 31, 307-327.

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (2007). Time-Series Analysis:

Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of U.K. inflation. Econometrica, 50, 987-1008.

Fan, J. and Yao, Q. (2003). Nonlinear time series:nonparametric and parametric methods.

Springer, U.S.A.

Forecasting and Control. 3rd edition. Pearson education, India.

Lama, A., Jha, G.K., Gurung, B., Paul,R.K. and Sinha, K. (2016). VAR-MGARCH Models for

Volatility Modelling of Pulses Prices: An Application. Journal of the Indian Society of

Agricultural Statistics, 70, 145-151.

Sims, C. (1980). Macroeconomics and reality. Econometrica, 48, 1-48.

Taylor, S. J. (1986). Modeling financial time series. Wiley, New York.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 36 -

Introduction to Bayesian Time Series Analysis

 Achal Lama1*, K N Singh1 and Bishal Gurung2

1ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012
2North-Eastern Hill University, Shillong-793022

Email: achallama.iasri@icar.org.in

1. Introduction

Bayesian estimation and inference offer several advantages in statistical modeling,

particularly when incorporating prior knowledge is essential. At the heart of the Bayesian

paradigm lies the specification of prior distributions, which reflect the analyst’s belief or

available information before observing the current data. The fundamental assumption in

Bayesian analysis is that the data alone may not capture the entire underlying behavior of the

process. Thus, prior information is formally combined with data through Bayes’ theorem,

producing a posterior distribution of the model parameters. Let us consider the parametric

space  denote the vector of model parameters, denote the vector of model parameters, () 

and Y is the data vector. According to Bayes’ rule, the posterior density

() () ()y L Y    

where, ()L Y  is the likelihood function. The straightforward way to estimate  is to compute

the posterior mean of  as follows:

ˆ ()y d   = 

One of the strengths of the Bayesian framework is that it provides full probability distributions

for parameters, as opposed to point or interval estimates in classical (frequentist) approaches.

This is particularly beneficial in fields like finance, where rapid information flow justifies the

use of prior knowledge.

Bayesian modeling allows for various types of priors. Non-informative priors are used when

little is known a priori, while conjugate priors simplify calculations since the posterior belongs

to the same family as the prior. For example, when the likelihood is from the exponential

family, deriving conjugate priors becomes more tractable (Lee, 2004). Additionally, conjugate

priors facilitate updating in light of new data by modifying hyperparameters instead of the

entire distribution.

mailto:achallama.iasri@icar.org.in

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 37 -

Given the computational complexity involved, especially in high-dimensional settings, Markov

Chain Monte Carlo (MCMC) methods are widely used for Bayesian estimation. MCMC

methods possess two vital characteristics:

The first advantage is its capability to handle high-dimensional problems efficiently, and the

second is its ability to draw random samples directly from the posterior distribution. To

illustrate the process, consider a scenario where information is desired about a distribution,

known only up to a constant CCC, under the assumption that the state space EEE is either finite

or countable. In such a case, the distribution can be expressed with a probability mass function

proportional to the available information. The primary objective of employing the Markov

Chain Monte Carlo (MCMC) method is to obtain samples from this posterior distribution.

()
() ()

() ()
E

f y p
y

f y p


 
 

 





=


To obtain the posterior distribution, the following steps are undertaken. First, an ergodic

Markov Chain is constructed, which converges to a stationary posterior distribution. Next, the

Markov Chain is used to simulate values over a large number of iterations, denoted by l+k. The

l-1 samples are discarded to ensure convergence to the stationary distribution, and the

remaining samples are used for analysis. From these l+k samples, the expectation and other

summary statistics are computed, as these represent stationary values. The expectation of the

posterior distribution is particularly significant because it is used to estimate the parameters of

the model under study.

() ()
E

E y
 



 





=

() ()

() ()
E

E

f y p

f y p





  

 




=




But, if the posterior distribution is high dimensional or else complicated, it is difficult to

obtain closed form solutions for C. The answer to this is the MCMC method. The two very

widely used MCMC algorithms are Metropolis-Hastings (MH) algorithm and Gibbs

sampling. Gibbs sampling is considered to be a special sampler of MH algorithm.

 2. Sampling Algorithms

 2.1. Metropolis-Hastings algorithm

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 38 -

The MH algorithm is a popular algorithm which is used to obtain a sequence of random

samples from a proposed distribution (,)q   where direct sampling is difficult. The

algorithm is first proposed by Metropolis et al., (1953) and extended by Hastings (1970).

The idea of MH is simple, in this method a proposal point  is generated from the proposal

distribution (,.)q  with an acceptance probability as

() () , min 1, ,r    = ,where

()
() ()

() ()

,
,

,

q
r

q

   
 

   
=

This process can be thought of as generating a random number X from a uniform

distribution U [0,1] and accepting the state  if (,)X    , otherwise the point  is

rejected and the algorithm remains in the same state. The quantity (),r   is known as the

MH ratio and hence the algorithm as MH algorithm. This algorithm can be summarized in

following steps

1. A proposal distribution is selected with transition matrix Q=(q(I,j))I,jE . Select an

integer s between 1 and n.

2. Assign n=0 and 0 =s.

3. A random variable  is generated such that () (,)P j q jn = = and X is generated

independently.

4. If (,)X s j , then  =j, otherwise  = s.

5. Next n is set as n=n+1 and n =

6. Go to step 3.

Random walk algorithm is considered a special case of the Metropolis-Hastings (MH)

algorithm, where the proposal distribution exhibits symmetry. However, its performance

significantly deteriorates in high-dimensional models, as increasing dimensionality tends

to reduce the acceptance rate of proposed samples.

2.2. Gibbs sampling

Gibbs sampling, on the other hand, is another popular MCMC algorithm named after Josiah

Willard Gibbs, though it was introduced by Geman and Geman in 1984. It is known for its

simplicity, ease of implementation, and effectiveness in addressing high-dimensional

problems. While conjugate priors are often useful in Bayesian analysis, constructing a joint

conjugate prior for multiple parameters can be challenging. In such cases, conditional

conjugate priors are relatively easier to define. Gibbs sampling leverages these conditional

priors to transform a complex multidimensional sampling problem into a series of simpler

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 39 -

one-dimensional problems. The key advantage is that the conditional conjugate prior

maintains the same form as the posterior distribution. Assuming a data set y = (y1,y2,…,yn)

where each yi is associated with v parameters, for each j=1,2,..., yi = 1, 2, ..., v, a one-

dimensional conjugate prior is specified and the corresponding conditional posterior is

derived using Bayes’ theorem. The Gibbs sampling then proceeds iteratively through a

sequence of these conditional updates.

1. The initial parameter vector ()0 0

1,..., v  is defined.

2. Parameter vector is updated by sampling as follows:

()

()

1 0 0

1 1 2

1 1 0 0

2 2 1 3

,..., ,

, ,..., ,

v

v

p y

p y

   

    

.

.

.

()1 1 1 1

1 2 1, ,..., ,v v vp y     −

3. Using this updated values as starting parameter values the sampling is repeated M

times. M is a constant which is selected to be sufficiently large and referred to as burn-

in period.

4. After simulating (1) (2) (){ , ,..., }M M M n  + + + from the Gibbs sampling Bayesian

inferences are drawn.

The main drawback of this method is that it is infeasible to apply when complete conditional

distribution is not known.

3. Bayesian time series models

The Bayesian framework has been widely extended to various time series models. In this

context, the focus is primarily on MGARCH and VAR models, both of which are multivariate

and are extensively applied in macroeconomic analysis. These models are capable of capturing

dynamic relationships among multiple time series variables. Let 𝑌𝑡 represent a (k×1) vector of

time series variables. The standard form of the p-lag vector autoregressive model, denoted as

VAR(p), is given as:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 40 -

1 1 2 2 3 3 ...t t t t p t p tY A B Y B Y B Y B Y − − − −= + + + + + +

where, A is k× 1 vector of intercepts , Bi (i =1, 2, …, p) is k × k matrices of parameters and

 .

For a multivariate time series the MGARCH model is given by:

Where is a k x k positive-definite matrix representing the conditional variance-

covariance of εt . Here, k denotes the number of series and t =1,2,…,n indicates the number of

observations. The formulation of the MGARCH model mainly depends on how the conditional

variance is specified. Engle and Kroner (1995) proposed the BEKK model, which is a direct

extension of the univariate GARCH model to a multivariate setting. In this framework, the

conditional variance evolves based on the current and past information available in the system.

A general GARCH(p, q) model, as introduced by Bollerslev (1986), can be expressed as:

2 2

0 1 1 1 1t t p t p t q t qh h h      − − − −= + + + + + +
,

0, 0i i  
,
 1+ ii 

where, th is the conditional variances which depends on the previous error terms as well as

previous conditional variances of the process.

Equation (2) can be transferred into multivariate GARCH model with a generalization of the

resulting variance matrix Ht

11 12 13

21 22 23

31 32 33

t

h h h

H h h h

h h h

 
 

=  
 
 

Each element of Ht depends on the p delayed values of the squared
t , the cross product of

t and on the q delayed values of elements from Ht . In general, multivariate GARCH (1, 1)

model can be written as:

2

11 1 1 2 1 3 11

' 2

0 0 22 2 1 2 2 3 22

2

33 3 1 3 2 3 33

0 0 0 0

0 0 0 0

0 0 0 0

t

a a

H C C a a

a a

    

    

    

    
    

= +     
    
    

+

11 11 1 2 1 3 11

22 2 1 22 2 3 22

33 3 1 3 2 33 33

0 0 0 0

0 0 0 0

0 0 0 0

b h h h h h b

b h h h h h b

b h h h h h b

   
   
   
   
   

'),...,1(knytyty =

ttt Hy = 2/1

2/1
tH

),0(~  iidNt

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 41 -

In compact form, the above equation can also be written as:

 '

0 0 1 1 1t t t tH C C A A B H B − − −
 = + +

For 2 variable case the model can be represented as:

















−
















+



















































+

















=

−−

−

−

−−

12

22

11

21

12

22

11

21

12

22

11

21

1,21,1

2
1,2

2
1,1

1,11,2

12

22

11

21

12

22

11

21

1

''
g

g

g

g

tH

g

g

g

g

a

a

a

a

a

a

a

a

c

c

c

c

tH

tt

t

t

tt









1,22
2
211,12211121,11

2
11

2
1,2

2
211,21,1211122

1,1
2
1111,11 −+−+−+

−
+−−+

−
+= thgthggthg

t
attaa

t
acth 

1,2222211,12)22111221(

1,111211
2

1,222211,21,1)22111221(2
1,1211112,12

−
+−++

−+
−

+−−++
−

+=

thggthgggg

thgg
t

aattaaaa
t

aacth 

2 2 2 2 2222, 22 12 22 1, 1 2, 1 11, 112 1, 1 22 2, 1 12

22 12 22 12, 1 22, 122

h c a a a a g ht t t tt t

g g h g ht t

   = + + + +− − −− −

+ +− −

 As already discussed, Bayesian analysis requires the assignment of prior distributions to the

parameters of the model. Accordingly, priors for MGARCH and VAR models are defined. For

the MGARCH model, normal priors are employed with different parametric ranges based on

the parameters being estimated. The constant terms of each model are assigned a N(0,10) prior,

while other parameters are given N(0,100) priors. The use of normal priors is primarily due to

their conjugate properties, which simplify the computation of the posterior distributions. These

priors are assigned following Fioruci et al. (2014), who demonstrated their effectiveness in the

context of MGARCH models.

(),Min MinN V 

If iV denotes the block of MinV

associated with the K coefficients in equation i and

,i jjV as its

diagonal elements, then a common implementation of the Minnesota prior would set:

1

, 2i jj

a
V

p
=

for coefficients on own lags

2

2

ii

jj

a

p





for coefficients on lags of variable j ≠ i

 3 iia  for coefficients on exogenous variables

This prior simplifies the complicated choice of fully specifying all the elements of MinV in

choosing three scalars 𝑎1, 𝑎2, 𝑎3.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 42 -

The next prior used is a natural conjugate prior Normal-Wishart. The form of the prior is as

follows:

()

()11

,

,

N V

W S v

 

−−

 



where,  ,V , v and S are to be selected by the experimenter depending upon the data set in

use. Then the posterior of this prior is as follows:

()

()11

, ,

,

y N V

y W S v

 

−−

 



where,

()

()

1 '

'' 1 1' ' '

vec B

B V V B X X B

S S S B X X B B V B B V X X B

v T v



−

− −

=

 = +
 

= + + + − +

= +

The third prior taken up is the independent Normal-Wishart, which has the following form:

𝑝(𝛽, ∑−1) = 𝑝(𝛽)𝑝(∑−1)

where

𝛽~𝑁(𝛽, 𝑉𝛽)

and

∑−1~𝑊(𝑆−1 , 𝑣)

This prior allows for the prior covariance matrix �̲�𝛽 , to take any values chosen by the

researcher, rather than the restrictive ∑ ⊗ �̲� form of the natural conjugate prior. In this prior,

the joint posterior 𝑝(𝛽, ∑−1|𝑦) does result in an easily computable form that would allow easy

Bayesian analysis this is due to the fact that posterior means and variances do not have

analytical forms.

4. Data description and illustration

To demonstrate the application of the Bayesian framework, we implement it within the context

of a Multivariate GARCH (MGARCH) model, specifically using the BEKK (Baba-Engle-

Kraft-Kroner) specification. For this illustration, a dataset comprising two monthly time

series—the International Price Index and the Domestic Price Index of edible oils—has been

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 43 -

utilized. The International edible oil price index was obtained from the World Bank’s

Commodity Prices Indices (Pink Sheet), accessible via its official website. The Domestic edible

oil price index was sourced from the Office of the Economic Adviser, Ministry of Commerce

and Industry, Government of India. The dataset spans from January 1990 to January 2016,

consisting of 313 monthly observations.

In accordance with the Bayesian approach discussed earlier, prior distributions were assigned

to the model parameters, and the posterior distributions were derived using Markov Chain

Monte Carlo (MCMC) simulation techniques. The time series plots of both the International

and Domestic price indices are presented in Figure 1, providing a visual overview of the series'

behavior over time. The Bayesian parameter estimates for the BEKK-MGARCH model are

summarized in Table 1, offering insight into the volatility dynamics captured by the model.

Furthermore, the estimated conditional volatilities of the two series, derived from the posterior

distributions, are graphically represented in Figure 2, illustrating the time-varying volatility

patterns inherent in the data.

Figure 1. Time plot of International (bold) and Domestic (dotted) edible oils price indices

0.00

50.00

100.00

150.00

200.00

250.00

300.00

1
9

9
0

M
0

1

1
9

9
0

M
1

2

1
9

9
1

M
1

1

1
9

9
2

M
1

0

1
9

9
3

M
0

9

1
9

9
4

M
0

8

1
9

9
5

M
0

7

1
9

9
6

M
0

6

1
9

9
7

M
0

5

1
9

9
8

M
0

4

1
9

9
9

M
0

3

2
0

0
0

M
0

2

2
0

0
1

M
0

1

2
0

0
1

M
1

2

2
0

0
2

M
1

1

2
0

0
3

M
1

0

2
0

0
4

M
0

9

2
0

0
5

M
0

8

2
0

0
6

M
0

7

2
0

0
7

M
0

6

2
0

0
8

M
0

5

2
0

0
9

M
0

4

2
0

1
0

M
0

3

2
0

1
1

M
0

2

2
0

1
2

M
0

1

2
0

1
2

M
1

2

2
0

1
3

m
1

1

2
0

1
4

m
1

0

2
0

1
5

m
0

9

P
ri

ce
 i

n
d

ex

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 44 -

R code for analysing a time series data using ARIMA and AR-GARCH model

library(“tseries”)

library(“forecast”)

library(“fgarch”)

setwd("C:/Users/Desktop") # Setting of the work directory

data<-read.table("data.txt") # Importing data

datats<-ts(data,frequency=12,start=c(1982,4)) # Converting data set into time series

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 45 -

plot.ts(datats) # Plot of the data set

adf.test(datats) # Test for stationarity

diffdatats<-diff(datats,differences=1) # Differencing the series

datatsacf<-acf(datats,lag.max=12) # Obtaining the ACF plot

datapacf<-pacf(datats,lag.max=12) # Obtaining the PACF plot

auto.arima(diffdatats) # Finding the order of ARIMA model

datatsarima<-arima(diffdatats,order=c(1,0,1),include.mean=TRUE) # Fitting of ARIMA

model

forearimadatats<-forecast.Arima(datatsarima,h=12) # Forecasting using ARIMA model

plot.forecast(forearimadatats) # Plot of the forecast

residualarima<-resid(datatsarima) # Obtaining residuals

archTest(residualarima,lag=12) # Test for heteroscedascity

Fitting of AR-GARCH model

garchdatats<-garchFit(formula = ~ arma(2)+garch(1, 1), data = datats, cond.dist =

c("norm"),

include.mean = TRUE, include.delta = NULL, include.skew = NULL, include.shape =

NULL, leverage = NULL, trace = TRUE,algorithm = c("nlminb"))

Forecasting using AR-GARCH model

forecastgarch<-predict(garchdatats, n.ahead = 12, trace = FALSE, mse =

c("uncond"),

plot=FALSE, nx=NULL, crit_val=NULL, conf=NULL)

plot.ts(forecastgarch) # Plot of the forecast

Bibliography

Asai, M., McAleer, M. and Yu, J. (2006). Multivariate stochastic volatility: a review.

Econometric Reviews, 25(2–3), 145–175.

Asai, M. (2015). Bayesian analysis of general asymmetric multivariate garch models and news

impact curves. Journl of Japan Statistical Society, 45, 129-144.

Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006). Multivariate GARCH models: a

survey. Journal of Applied Econometrics, 21, 79-109.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of

Econometrics, 31, 307-327.

Carriero, A., Kapetanios, G. and Marcellino, M. (2009). Forecasting exchange rates with a

large Bayesian VAR. International Journal of Forecasting, 25, 400–417.

Engle, R.F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of U.K. inflation. Econometrica, 50, 987-1008.

Fioruci, J. A., Ehlers, R. S. and Filho, M. G. A. (2014). Bayesian multivariate GARCH models

with dynamic correlations and asymmetric error distributions. Journal of Applied

Statistics, 41, 320-331.

Lama, A. (2017). Investigations on Bayesian multivariate time-series models.

 Unpublished PhD thesis, PG School, ICAR-IARI.

Sims, C. (1980). Macroeconomics and reality. Econometrica, 48, 1-48.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 46 -

Count Time Series Models
Santosha Rathod, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi Kumar, Prabhat

Kumar

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

Email: santosha.rathod@icar.org.in

Introduction

Count data refers to data in which observations assume only non-negative integer values,

typically arising from counting occurrences rather than ranking or measuring. These data exhibit

unique characteristics, such as discreteness, skewness, over-dispersion (where variance exceeds the

mean), and often excess zeros. Count data is prevalent in various domains and is increasingly

encountered in time series formats. Examples include: modeling pest and disease outbreaks in

agriculture, assessing the health effects of environmental pollution, analyzing daily rainfall, air

quality indices, monthly polio cases, daily hospital admissions for asthma, and traffic accident

frequencies. Similarly, purchase frequencies in a store or consumer demand over time can also be

modeled as time series of counts.

Time series analysis of count data is an evolving field motivated by its wide range of

applications. Such data involve temporal dependence (autocorrelation) and discrete-valued

distributions, and therefore standard time series models—which often assume normality and

continuity—may not be appropriate. Neglecting either the discrete nature or the serial dependence

in the data can lead to serious model misspecification.

A successful model for count time series must effectively account for both dependence

between observations and over-dispersion. In many cases, events are relatively rare, rendering the

use of the normal distribution inadequate. Consequently, models such as the Autoregressive

Conditional Poisson (ACP) model have been developed. In its basic form, the ACP model assumes

that counts follow a Poisson distribution, where the conditional mean (given past observations)

evolves according to an autoregressive structure. While such a model is conditionally equi-

dispersed, it often becomes unconditionally over-dispersed due to temporal dependence.

To further handle situations where mean and variance are not equal, more flexible

approaches have been proposed. Notably, the Integer-valued Generalized Autoregressive

Conditional Heteroscedasticity (INGARCH) models extend the Poisson and negative binomial

frameworks by incorporating conditional heteroscedasticity into count data modeling. The

INGARCH model is considered a member of the generalized linear model (GLM) family, adapted

specifically for integer-valued time series.

In agricultural research and related fields, count-based time series—such as number of pest

attacks, disease incidences, or harvest losses—are common. Employing appropriate statistical

models like Poisson regression, Negative Binomial models, ACP, and INGARCH is crucial for

accurate inference, forecasting, and policy recommendations.

Poisson Regression Model

mailto:santosha.rathod@icar.org.in

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 47 -

Poisson distribution is a class of generalized linear model which follows Poisson

distribution. Let us consider a random variable y follows a Poisson distribution with parameter

 , if it takes integer values y = 0, 1, 2, … with probability distribution

 ()
!y

e
yYP

y−
== 0 , (1)

where the mean and variance expression of the distribution is () () == yVARyE . So it is seen

that the mean and variance expression are equal and if any factor influences the mean value, it

will influence the variance also. Thus, the homoscedasticity would not be appropriate for this

kind of distribution (Chen and Lee 2016). The parameters of Poisson regression model 𝑦𝑖 =

exp(𝑋𝑖
′𝛽) + 𝜀𝑖 can be estimated using maximum likelihood method.

Assumptions in Poisson Regression

• The probability of at least one occurrence of the event in a given time interval is

proportional to the length of the interval.

• The probability of two or more occurrences of the event in a very small time interval is

negligible.

• The numbers of occurrences of the event in disjoint time intervals are mutually

independent.

Then the probability distribution of the number of occurrences of the event in a fixed

time interval is Poisson with mean µ = λt, where λ is the rate of occurrence of the event per

unit of time and t is the length of the time interval. A process satisfying the three assumptions

listed above is called as a Poisson process. The most important point in estimating parameters

of Poisson regression is its relationship between the mean and the variance. A useful property

of the Poisson distribution is that the sum of independent Poisson random variables is also

Poisson. Specifically, if Y1 and Y2 are independent with Yi ∼ P(µi) for i = 1, 2 then Y1 + Y2

∼ P(µ1 + µ2).

Negative Binomial Regression Model

 A distribution of counts will usually have a variance that’s not equal to its mean. When

we see this happen with data that we assume (or hope) is Poisson distributed, we say we have

under or over-dispersion, depending on if the variance is smaller or larger than the mean.

Performing Poisson regression on count data that exhibits this behavior results in a model that

doesn’t fit well. Negative binomial regression is a type of generalized linear model in which

the dependent variable Y is a count of the number of times an event occurs. It can be used for

over-dispersed count data, that is when the conditional variance exceeds the conditional mean.

It can be considered as a generalization of Poisson regression since it has the same mean

structure as Poisson regression and it has an extra parameter to model the over-dispersion. If

the conditional distribution of the outcome variable is over-dispersed, the confidence intervals

for the Negative binomial regression are likely to be narrower as compared to those from a

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 48 -

Poisson regression model. Unlike the Poisson distribution, the variance and the mean are not

equivalent. This suggests it might serve as a useful approximation for modeling counts with

variability different from its mean.

Let Y is random variable which follows the negative binomial distribution with

parameters (r, θ), where θ ∈ (0, 1) and r an integer, then its probability mass function is given

by

𝑃[𝑌 = 𝑦] = (𝑦+𝑟−1
𝑦

) 𝜃𝑦(1 − 𝜃)𝑟 , 𝑦 = 0,1,2, …

(2)

𝑦~𝑁𝑒𝑔𝐵𝑖𝑛(𝑟, 𝜃) Therefore 𝐸[𝑌] =
𝑟𝜃

(1−𝜃)
 and 𝑉𝑎𝑟[𝑌] =

𝑟𝜃

(1−𝜃)2
 .

Model Assumption

As we mentioned earlier, negative binomial models assume the conditional means are not equal

to the conditional variances. This inequality is captured by estimating a dispersion parameter

(not shown in the output) that is held constant in a Poisson model. Thus, the Poisson model is

actually nested in the negative binomial model. We can then use a likelihood ratio test to

compare these two and test this model assumption. To do this, we will run our model as a

Poisson.

Negative binomial regression can be used for over-dispersed count data that is when

the conditional variance exceeds the conditional mean. It can be considered as a generalization

of Poisson regression since it has the same mean structure as Poisson regression and it has an

extra parameter to model the over-dispersion. If the conditional distribution of the outcome

variable is over-dispersed, the confidence intervals for the Negative binomial regression are

likely to be narrower as compared to those from a Poisson regression model.

Generalized Linear Model

Let us denote the count time series by {𝑌𝑡 ∶ 𝑡 ∈ 𝑁} and time varying r-dimensional covariate

vector say {𝑋𝑡 ∶ 𝑡 ∈ 𝑁} i.e. 𝑋𝑡 = (𝑋𝑡,1,… ,𝑋𝑡,𝑟,)
𝑇 . The conditional mean becomes

𝐸(𝑌𝑡 |𝐹𝑡−1) = 𝜆𝑡 and Ft is historical data.

The generalized model form is expressed as follows

𝑔(𝜆𝑡) = 𝛽0 + ∑ 𝛽𝑘�̃�
𝑝
𝑘=1 (𝑌𝑡−𝑖𝑘) + ∑ 𝛼𝑙𝑔

𝑞
𝑙=1 (𝜆𝑡−𝑗𝑙) + 𝜂

𝑇 (3)

Where 𝑔 is link function and �̃� is transformation function. 𝑔(𝜆𝑡) is linear predictor. To allow

for regression on arbitrary past observations of the response, 𝑃 = {𝑖1,𝑖2,… , 𝑖𝑝,} and

0<0 < 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑝 < ∞ for leads to lagged observations 𝑌𝑡−𝑖1 , … , 𝑌𝑡−𝑖𝑝 . Set 𝑄 =

{𝑗1,𝑗2,… , 𝑗𝑞,} and 0<0 < 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑝 < ∞. The set 𝑄 lagged in parameter mean i.e.

𝜆𝑡−𝑖1 , … , 𝜆𝑡−𝑖𝑝.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 49 -

Specification of the model order, i.e., of the sets P and Q, are guided by considering the

empirical autocorrelation functions of the observed data. This approach is described for ARMA

models in many time series analysis literatures.

Cases of GLM

Case 1: Consider the situation where 𝑔 and �̃� are equal to identity i.e. 𝑔(𝑥)= �̃�(𝑥) = 𝑥 ,

further P={1,…,p}, Q={1,…,q} and 𝜂 = 0 then the GLM model (3) becomes

𝜆𝑡 = 𝛽0 + ∑ 𝛽𝑘
𝑝
𝑘=1 𝑌𝑡−𝑖𝑘 + ∑ 𝛼𝑙𝜆𝑡−𝑗𝑙

𝑞
𝑙=1 (4)

Assuming further that 𝑌𝑡|𝑌𝑡−1 is Poisson distributed, then we obtain an integer-valued GARCH

model of order p and q, abbreviated as INGARCH(p,q). These models are also known as

autoregressive conditional Poisson (ACP) models (Heinen 2003, Ferland et al. 2006 and

Fokianos, et al. 2009).

Case 2: The Negative Binomial distribution allows for a conditional variance to be larger

than the mean 𝜆𝑡which is often referred to as over-dispersion (Christou and Fokianos 2014).

It is assumed that 𝑌𝑡|𝐹𝑡−1~𝑁𝑒𝑔𝐵𝑖𝑜𝑛𝑜𝑚(𝜆𝑡, ∅). The Poisson distribution is a limiting case of

the Negative Binomial when ∅ → ∞.

R codes to implement count TS models

rm(list = ls())

d1=read.table(file = "CHN.txt", header = T)

head(d1)

attach(d1)

reg1=cbind(MAXT, MINT, RF, MRH, ERH)

YSB1=as.integer(YSB)

Box.test(YSB1)

training data ############

reg11=cbind(MAXT[1:421], MINT[1:421], RF[1:421], MRH[1:421], ERH[1:421])

reg12=cbind(MAXT[422:428], MINT[422:428], RF[422:428], MRH[422:428],

ERH[422:428])

reg21=cbind(MAXT[1:451], MINT[1:451], RF[1:451], MRH[1:451], ERH[1:451])

reg22=cbind(MAXT[452:461], MINT[452:461], RF[452:461], MRH[452:461],

ERH[452:461])

ysb.train1=YSB1[1:421]

ysb.test1=YSB1[422:428]

ysb.train2=YSB1[1:451]

ysb.test2=YSB1[452:461]

############## Poisson INGARCH #############

M1=tsglm(ysb.train2, model=list(past_obs=5, past_mean=5),

 xreg=reg21, distr="poisson")

Box.test(M1$residuals)

summary(M1)

coeftest(M1)

M1$fitted.values

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 50 -

predict(M1, n.ahead=8, newxreg=reg22)

############## NB INGARCH #############

M2=tsglm(ysb.train2, model=list(past_obs=5, past_mean=5),

 xreg=reg21, distr="nbinom")

Box.test(M2$residuals)

summary(M2)

coeftest(M2)

M2$fitted.values

predict(M2, n.ahead=8,newxreg=reg22)

Suggested readings

• Chen, C.W.S. and Lee, S. (2016). Generalized Poisson autoregressive models for time

series of counts. Computational Statistics & Data Analysis, 99: 51-67.

• Christou V, Fokianos K (2014). Quasi-Likelihood Inference for Negative Binomial

Time Series Models. Journal of Time Series Analysis, 35(1), 55–78.

• Ferland R, Latour A, Oraichi D (2006). Integer-Valued GARCH Process. Journal of

Time Series Analysis, 27(6), 923–942.

• Fokianos K, Rahbek A, Tjostheim D (2009). Poisson Autoregression. Journal of the

American Statistical Association, 104(488), 1430–1439.

• Heinen A (2003). Modelling Time Series Count Data: An Autoregressive Conditional

Poisson Model. CORE Discussion Paper, 62.

• Liboschik,T., Fokianos, K. and Fried, R. (2016). tscount: An R Package for Analysis

of Count Time Series Following Generalized Linear Models. Vignette of R package

tscount version 1.3.0.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 51 -

Spatiotemporal Time Series Modelling and Forecasting for

Abiotic Stress Management in Agriculture

Santosha Rathod, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi Kumar, Prabhat

Kumar

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

Email: santosha.rathod@icar.org.in

Introduction

Spatiotemporal time series are observations recorded across both space and time, incorporating

systematic dependencies among spatial locations and temporal patterns. These models

effectively handle single variables recorded over time from multiple locations. Classic

examples of spatio-temporal data include daily or hourly carbon emission levels from

monitoring stations, daily river discharge across various basins, frequent weather parameter

recordings (temperature, rainfall, humidity, etc.) from different agro-climatic zones, and traffic

flow data from multiple checkpoints. Traditionally rooted in geo-statistics, spatio-temporal

modeling has now found applications in sociology, economics, environmental sciences,

ecology, and notably in agricultural research.

In the context of abiotic stress management in agriculture, spatio-temporal models are highly

relevant as they allow for detection, monitoring, and forecasting of stress patterns like drought,

heat waves, frost, and soil salinity across different regions and seasons. These stresses are not

static—they evolve both geographically and temporally, making it essential to adopt models

that capture variations across space and time simultaneously. For instance, analyzing how

drought severity varies across districts over cropping seasons or how rising temperature trends

affect heat-stress in wheat zones helps in site-specific and timely adaptation strategies.

Research suggests that combining spatial and temporal data enhances the modeling accuracy

and decision-making effectiveness, especially under conditions of uncertainty posed by climate

variability. Thus, spatio-temporal modeling forms the backbone of early warning systems,

stress forecasting tools, and real-time advisories that are crucial for mitigating the adverse

impacts of abiotic stress on crop productivity and food security.

Despite significant advances in univariate time series modeling, progress in spatio-temporal

time series analysis has been relatively limited. This is primarily due to computational

complexities and the inaccessibility of simultaneous spatial and temporal information. While

univariate time series models focus solely on temporal autocorrelation—typically modeled

through the Box-Jenkins autoregressive moving average (ARMA) framework (Box and

mailto:santosha.rathod@icar.gov.in

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 52 -

Jenkins, 1970)—spatio-temporal models are designed to capture dependencies across both

space and time.

Spatio-temporal models incorporate observations from multiple spatial locations across several

time periods, thereby enabling a more comprehensive understanding of complex dynamic

systems. In this context, spatio-temporal autoregressive moving average (STARMA) models

extend the conventional ARMA models by including spatial lags in both the autoregressive and

moving average components. These models are particularly useful for datasets where

observations exhibit autocorrelation not only over time but also across geographic or spatial

domains.

STARMA Model

The STARMA model, introduced by Pfeifer and Deutsch (1980b), is tailored to handle

such scenarios. It considers a single variable Zi(t), observed at N fixed spatial locations (i = 1,

2,…, N) on T time periods (t = 1, 2, . . ., T). The N spatial locations can be a geographical

location, country, state, etc. The spatial dependencies between N times series is incorporated

through N*N spatial weight matrices. Analogous to univariate time series, Z(t) is expressed as

a linear combination of past observations and errors. The STARMA model (Pfeifer and

Deutsch, 1980a), denoted by 𝑆𝑇𝐴𝑅𝑀𝐴(𝑝𝜆1 , 𝜆2 ,..., λ𝑝, 𝑞𝑚1 , 𝑚2 ,..., m𝑞) can be represented in the

matrix equation as follows;

𝑍(𝑡) = ∑∑𝜙𝑘𝑙 𝑊
𝑙

𝜆𝑘

𝑙=0

𝑝

𝐾=1

𝑍(𝑡 − 𝑘) −∑∑𝜃𝑘𝑙 𝑊
𝑙

𝑚𝑘

𝑙=0

𝑞

𝐾=1

𝜀(𝑡 − 𝑘) + 𝜀(𝑡)

 … (1.1)

Where,

 𝒛(𝒕) = [𝒛𝟏(𝑡), …… , 𝒛𝑵(𝑡)]
′is a N × 1 vector of observations at time t = 1,…, T,

 p is the autoregressive order (AR) with respect to time,

 q is the moving average order (MA) with respect to time,

 𝜆𝑘 is the spatial order of the kth AR term,

 𝑚𝑘 is the spatial order of the kth MA term,

 𝜙𝑘𝑙 is the AR parameter at temporal lag k and spatial lag l (scalar),

 𝜃𝑘𝑙 is the MA parameter at temporal lag k and spatial lag l (scalar) and

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 53 -

 𝑊𝑙is the N*N spatial weight matrix with spatial order l with diagonal elements zero and non-

diagonal elements is the relation between sites.

The spatial weight matrix 𝑊(0)= IN i.e. Identity matrix and each row of 𝑊𝑙 must add up to

one. The random error vector 𝜀(𝑡) = [𝜀1(𝑡), 𝜀2(𝑡), … , 𝜀𝑁(𝑡)]
′ is normally distributed at time t

with 𝐸[𝜀(𝑡)] = 0 , 𝐸[𝜀(𝑡)𝜀′(𝑡 + 𝑠)] = {
𝐺 = 𝜎2𝐼𝑁 𝑖𝑠 𝑠 = 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and 𝐸[𝜀(𝑡)𝜀′(𝑡 + 𝑠)] =

0, 𝑓𝑜𝑟 𝑠 > 0.

There are two subclasses of the STARMA model, in equation (3) when q=0, only

autoregressive terms remain and consequently the model progresses toward becoming space-

time autoregressive or STAR model which is represented as follows;

𝒁(𝒕) = ∑ ∑ 𝜙𝑘𝑙 𝑊
𝑙𝜆𝑘

𝑙=0
𝑝
𝐾=1 𝑍(𝑡 − 𝑘) + 𝜀(𝑡) …(1.2)

When p becomes 0, only moving average terms remains and hence the model becomes

space-time moving average or STMA model which is represented as follows;

𝒁(𝒕) = 𝜀(𝑡) − ∑ ∑ 𝜃𝑘𝑙 𝑊
𝑙𝑚𝑘

𝑙=0
𝑞
𝐾=1 𝜀(𝑡 − 𝑘) … (1.3)

Spatial weight matrix

Building the spatial weight matrix is a crucial step in STARMA modeling. The process

involves determining the hierarchical ordering of neighbors for each location and selecting an

appropriate sequence of weighting matrices. This selection is subjective and depends on the

model builder’s discretion. The complexity of the weight matrix directly influences the

difficulty in estimating the parameters of the STARMA model. In most applications, it is often

assumed that spatial patterns are equal and regularly spaced to simplify the modeling process.

However, this is typically just a simplifying assumption, as in reality, sites are usually

irregularly spaced. One common and simple method for assigning weights is the binary

scheme, where a weight of one is assigned if two areas share a common border and zero

otherwise, as suggested by Griffith (1996, 2009).

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 54 -

Fig.1: Schematic representation of spatial weight grid

In spatio-temporal modeling, the construction and normalization of the spatial weight

matrix is a critical step, as it governs the spatial dependence structure among the observational

units. A common practice in constructing these matrices is row normalization, wherein each

row is scaled such that its elements sum to one. This approach standardizes the influence

received by each spatial unit from its neighbors. However, some studies have employed column

normalization, where the focus shifts to the influence exerted by a unit iii on others, rather than

the influence received from a neighboring unit j.

The choice of normalization scheme is non-trivial, as it can significantly affect the

inferences drawn from the model. Different weight structures may result in varying degrees of

spatial influence, potentially introducing bias and leading to divergent interpretations of the

underlying spatial dynamics. Moreover, in spatio-temporal data analysis, the assumption that

the influence from neighboring units remains constant over time may not always be realistic.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 55 -

Consequently, the specification of spatial weights should be done with careful consideration of

temporal variability and hierarchical spatial relationships.

Spatial weight matrices should also incorporate the ordering of neighbors. For example,

first-order neighbors are those directly adjacent to a target location, while second-order

neighbors are more distant but still exert influence, followed by third-order and higher-order

neighbors. This hierarchical structure allows for modeling spatial autocorrelation at multiple

levels of proximity. A schematic representation of such a spatial weight grid, as proposed by

Pfeifer and Deutsch (1980b), is illustrated in Figure 1.

STARMA Modeling Procedure

Similar to the well-established Box–Jenkins methodology for univariate ARIMA

models, the STARMA model (Spatio-Temporal Autoregressive Moving Average) follows a

three-stage modeling procedure comprising:

1. Identification

2. Estimation, and

3. Diagnostic Checking

This structured approach, as proposed by Pfeifer and Deutsch (1980b), enables

systematic development and evaluation of spatio-temporal models.

A STARMA model is considered stationary if its covariance structure remains invariant

over time and all the roots of the model lie within the unit root circle. In this context, the

invertibility of the spatio-temporal autoregressive (STAR) model is a necessary condition for

the stationarity of the STARMA model. Ensuring these properties is essential for the model to

yield valid statistical inferences and reliable forecasts.

Model Identification

The space-time autocorrelation function (STACF) and space-time partial

autocorrelation function (STPACF) are employed to determine the orders of the STAR and

STMA models. Similar to the univariate ARIMA model, the identification of STAR and STMA

orders is based on the presence of significant spikes in the STACF and STPACF plots. The

space-time autocorrelation function (STACF) between the lth and kth order neighbors with a

time lag s (where s = 1,…,k and h = 0,1,…,λ) is defined as follows.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 56 -

𝜌𝑙𝑘(𝑠) =
∑ ∑ 𝑊(𝑙)𝑍𝑖(𝑡)𝑊

(𝑘)𝑍𝑖(𝑡+𝑠)
𝑇−𝑆
𝑡=1

𝑁
𝑖=1

[∑ ∑ (𝑊(𝑙)𝑍𝑖(𝑡))
2 . (𝑊(𝑘)𝑍𝑖(𝑡+𝑠))

2]𝑇−𝑆
𝑡=1

𝑁
𝑖=1

1
2

 …(1.4)

The space time partial autocorrelation function (STPACF) is expressed in following equation;

𝜌ℎ0(𝑠) = ∑ ∑ 𝜙𝑗𝑙𝜌ℎ𝑙(𝑠 − 𝑗)
𝜆
𝑙=0

𝑘
𝑗=1 …(1.5)

Characteristics of the theoretical space-time autocorrelation and partial autocorrelation

functions for STAR, STMA and STARMA models (1.1) are depicted in following table.

Model Parameter Estimation

The maximum likelihood estimates of

 𝚽 = [ϕ10,ϕ11, … , ϕ1𝜆1 , … , ϕp0, ϕp1, … , ϕp𝜆𝑝]
′ and

 Θ = [θ10,θ11, … , θ1𝜆1 , … , θq0, θq1, … , θp𝜆𝑞]
′ rely on the assumption of errors i.e. which are

normally distributed with mean zero and variance-covariance matrix equal to 𝜎2𝐼𝑁. The

likelihood function for the same is defined as follows;

 𝑓(𝜀|Φ,Θ, 𝜎2)=(2𝜋)
−𝑇𝑁

2 |𝜎2𝐼𝑁𝑇|
−1

2 exp {−
1

2𝜎2
𝜖′𝐼𝜖}

 =(2𝜋)
−𝑇𝑁

2 (𝜎2)
−𝑇𝑁

2 exp {−
𝑆(Φ,Θ)

2𝜎2
} …(1.6)

Where,

 𝑆(Φ,Θ) = 𝜖′𝐼𝜖 = ∑ ∑ 𝜖𝑖
2(𝑡)𝑇

𝑡=0
𝑁
𝑖=1 is the sum of squares of the errors and 𝜖′ =

[𝜖1(1),…, 𝜖1(𝑇) ,…, 𝜖𝑁(1) ,…, 𝜖𝑁(𝑇)]. Finding the values of the parameters that maximize

the likelihood function is equivalent to finding the values of Φ and Θ that minimize the sum of

squares 𝑆(Φ,Θ). Therefore, the problem is reduced to finding the least squares estimates of Φ

and Θ .

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 57 -

 The errors 𝜀(𝑡) need to be recursively calculated using the equation:

 𝜀(𝑡)=𝑧(𝑡) + ∑ ∑ 𝜙𝑘𝑙
𝜆𝑘
𝑙=0

𝑝
𝑘=1 𝑊(𝑙)𝑧(𝑡 − 𝑘) − ∑ ∑ 𝜃𝑘𝑙

𝑚𝑘
𝑙=0

𝑞
𝑘=1 𝑊(𝑙)𝜀(𝑡 − 𝑘) …(1.7)

for t = 1, ... , T and for given values of the parameters (Φ,Θ).

Because the values of the observations z and of the errors care unknown for times previous to

time 1, these initial values need to be calculated. Thus, for any given choice ofthe parameters

(Φ,Θ) and starting values (𝑧 ∗, 𝑐 ∗) the set of values 𝑐(𝑐𝐼 >, 𝑒 𝐼 𝑧 ∗, 𝑐 ∗,𝑊) could be calculated

successively given a particular data set z. The log likelihood associated with the parameter

values (Φ,Θ, 𝜎2) conditional on the choice of (𝑧 ∗, 𝑐 ∗) would be

 𝑙∗(Φ,Θ, 𝜎
2) = −

𝑇𝑁

2
ln(2𝜋) −

𝑇𝑁

2
𝜎2 −

𝑆∗(Φ,Θ)

2𝜎2
 …(1.8)

So for fixed 𝜎2 , the conditional maximum likelihood estimates of Φ,Θ are the conditional

least squares estimates obtained by finding the values of Φ,Θ that minimize the conditional

sum of squares function

𝑆∗(Φ,Θ) = ∑ ∑ 𝜖𝑖
2(𝑡)𝑇

𝑡=0
𝑁
𝑖=1 …(1.9)

Diagnostic-Checking

At this stage, the goal is to assess whether the model adequately represents the data. If the fitted

model is appropriate, the residuals should resemble Gaussian white noise, meaning they should

be normally distributed with a mean of zero and a variance-covariance matrix equal to σ²Iₙ.

One approach to test for correlation is to compute the sample space-time autocorrelations of

the residuals and examine whether any significant structure remains. If the model is correctly

specified, then

 𝑣𝑎𝑟(�̂�𝑙0(𝑠)) ≈
1

𝑁(𝑇−𝑠)
 …(1.10)

where ρ̂ₗ₀(s) represents the space-time autocorrelation function of the residuals from the fitted

model. Since these residual space-time autocorrelations are approximately normal, they can be

standardized and assessed for statistical significance. If residuals display dependence, the

structure is identified, and the model is revised accordingly.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 58 -

Case Study: Forecasting Monthly Mean Maximum Temperature in North Karnataka Districts

(Rathod et al., 2018). This study focuses on modeling and forecasting the monthly mean

maximum temperature across nine districts in the northern region of Karnataka, India (see Fig.

1). The proposed STARMA methodology was applied to this spatio-temporal dataset. For

model development, data from January 2000 to August 2015 were used, while the period from

September 2015 to August 2016 was reserved for validating the forecasting performance of the

fitted model.

Fig. 1. Geographical map of karnataka

Construction of spatial weight matrix:

As described in the methodology section, the spatial weight matrix was constructed by

assigning equal weights to all neighboring locations. The spatial configuration of the nine

selected locations is illustrated in Figure 2.10, where each location is labeled numerically from

1 to 9. Based on their geographical proximity, a connectivity-based spatial weight matrix was

formulated.

For instance, with reference to location 1, the first-order neighbors are locations 2 and 8, while

locations 3, 6, and 7 are identified as second-order neighbors. The complete list of first- and

second-order neighbors for all nine locations is provided in Table 1. In the uniform spatial

weighting scheme, equal weights are assigned to each neighboring unit. For row normalization,

which ensures that each row of the matrix sums to one, the weight assigned to each neighbor

is computed as 1/n, where n is the number of neighbors for a particular location. For example,

location 1 (Gulbarga) has two first-order neighbors; thus, each neighbor is assigned a weight

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 59 -

of ½=0.5. Following this logic, weights for all nine locations are computed and presented in

the first-order spatial weight matrix in Table 3.

In addition, this study also incorporates a second-order spatial weight matrix into the STARMA

model. For location 1, the second-order neighbors are locations 3, 6, and 7. Since there are

three neighbors, a weight 1/3≈0.33 is assigned to each. This procedure is applied similarly for

all other locations, and the resulting second-order spatial weight matrix is presented in Table

4. To estimate the Spatio-Temporal Autocorrelation Function (STACF) and Spatio-Temporal

Partial Autocorrelation Function (STPACF), the model requires incorporation of the zero-order

(Table 2), first-order (Table 3), and second-order (Table 4) spatial weight matrices. Notably,

in the case of the zero-order spatial weight matrix, where no external spatial influence is

assumed, all diagonal elements are set to one, reflecting self-dependence of each spatial unit,

and off-diagonal elements are zero, indicating no spatial interaction with other locations

Fig. 2.: Map of districts/locations considered

Table 1: Neighbors of each site for each spatial order

Location Order

1 2

1 2,8 3,6,7

2 1,3 4,8,7

3 2,4,5,6 7,8

4 3,5 2

5 3,4,6 9

6 3,5,7,9 2,8

7 6,8,9 1,2,3

8 1,7,9 2,3,6

9 6,7,8 5

1. Gulbarga

2. Bijapur

3. Bagalkot

4. Belgaum

5. Dharwad

6. Gadag

7. Koppal

8. Raichur

9. Bellary

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 60 -

STARMA model fitting

In this study, the STARMA model was estimated following the three-stage procedure outlined

by Pfeiffer and Deutsch (1980a). As detailed in the methodology section, the STARMA

estimation process is an extension of the Box-Jenkins ARIMA framework adapted to a spatio-

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 61 -

temporal context. Similar to ARMA models, it involves three fundamental steps: model

identification, parameter estimation, and diagnostic checking. Based on the significant spikes

observed in the STACF and STPACF plots, the STARMA(1,0,1) model was selected. The

parameters of this model were estimated using the maximum likelihood method, and the

estimates, along with their standard errors and p-values, are provided in Table 5. These

estimated parameters were incorporated into the model to generate forecasts. For diagnostic

verification, the Multivariate Box-Pierce non-correlation test was employed, confirming that

the residuals were uncorrelated. The forecasting performance of the model is summarized in

Table 6.

Table 5: STARMA Model parameters

Spatial lag Slag 0 Slag 1 Slag 2

AR MA AR MA AR MA

Parameters -0.66

(0.023)

0.119

(0.010)

0.171

(0.052)

0.213

(0.0157)

0.79

(0.089)

0.11

(0.116)

Probability <0.001 <0.001 0.013 0.004 <0.001 0.010

The Multivariate Box-Pierce non-correlation test of residuals yielded a Chi-square statistic of

69.86 with a p-value of 0.31, indicating no significant autocorrelation among the residuals. Th

e values presented within parentheses denote the corresponding standard errors. To assess and

 compare the forecasting performance of the ARIMA and STARMA models, the Mean Absol

ute Percentage Error (MAPE) was computed and is reported in Table 6. The results reveal tha

t the STARMA model consistently produced lower MAPE values across all study locations. T

his consistent performance suggests that the STARMA model outperforms the conventional B

ox-Jenkins ARIMA model in all cases considered.

R cods to implement STARMA model

#install.packages("starma")

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 62 -

#install.packages("spdep")

rm(list = ls())

library(starma)

library(spdep)

library(forecast)

w0.mat=as.matrix(read.table(file="wo.txt",header=TRUE))

w1.mat=as.matrix(read.table(file="w1.txt",header=TRUE))

w0.mat

w1.mat

wlist =list(order0=w0.mat, order1=w1.mat)

wlist

st=as.matrix(read.table(file="ukavg.txt",header=TRUE)) # data read

st

stcor.test(st, wlist) #spatial corr

stacf(st, wlist, tlag.max=36)

stpacf(st, wlist, tlag.max=36)

#model fitting

#ar <- matrix(c(1, 1, 1, 0), 1,1)

#ma <- matrix(c(0, 1), 1, 2)

model=starma(st, wlist, ar = 1, ma = 1)

model

ab=summary(model)

ab

capture.output(ab, file = "myfile.txt")

res=model$residuals

stcor.test(res, wlist)

Suggested Readings

• Box, G.E.P. and Jenkins, G. (1970). Time series analysis, Forecasting and control,

Holden-Day, San Francisco, CA.

• Ding, Q., X. Wang, X. Zhang, and Z. Sun. (2011). Forecasting Traffic Volume with

Space–Time ARIMA Model. Advanced Materials Research, 156–57, 979–83.

• Pfeifer, P.E., and Bodily, S.E. (1990). A test of space-time ARMA modeling and

forecasting with an application to real estate prices, International Journal of

Forecasting, 16, 255-272.

• Pfeifer, P.E., and Deutsch, S.J. (1980). A Comparison of Estimation Procedures for the

Parameters of the STAR Model. Communication in Statistics, simulation and Comput.,

B9(3), 255-270.

• Pfeifer, P.E., and Deutsch, S.J. (1980a). A three-stage iterative procedure for space-

time modeling. Technometrics, 22(1), 35-47.

• Pfeifer, P.E., and Deutsch, S.J. (1981). Variance of the Sample-Time Autocorrelation

Function of Contemporaneously Correlated Variables. SIAM Journal of Applied

Mathematics, Series A, 40(1), 133-136.

• Rathod, S., Gurung,B., Singh, K.N. and Ray, M. (2018). An improved Space- ime

Autoregressive Moving Average (STARMA) model for Modelling and Forecasting of

Spatio-Temporal time-series data. JISAS.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 63 -

Vector Autoregressive Model

Prabhat Kumar, Santosha Rathod, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi

Kumar

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

Email: prabhatkkv@gmail.com

1. Introduction

The Vector Autoregressive (VAR) model is a powerful multivariate time series modeling

technique that captures the linear interdependencies among multiple time-dependent variables.

Unlike univariate time series models that handle a single variable, VAR models are particularly

useful when the objective is to model and forecast more than one variable simultaneously,

especially when these variables influence each other. In a VAR model, each variable in the

system is expressed as a linear function of its own past values and the past values of all other

variables in the system. This makes VAR especially suitable for modeling complex systems in

which feedback among variables is present, such as in economics, finance, or agriculture.

2. Basic Concepts

The VAR model was introduced by Christopher Sims in 1980 as an alternative to the traditional

structural economic models that imposed strong theoretical restrictions. One of the key features

of the VAR model is that it treats all variables in the system as endogenous by default, meaning

that it does not impose any distinction between dependent (endogenous) and independent

(exogenous) variables initially. This makes the model flexible and data-driven, allowing the

interrelationships among variables to emerge naturally through estimation. Because of this

 property, VAR is especially useful in macroeconomic modeling, financial time series

analysis, and agricultural systems where multiple variables are mutually influencing each other

over time.

3. Mathematical Formulation

For two variables (𝑌1 and 𝑌2), a VAR(1) model looks like:

𝑌1𝑡 = 𝑎10 + 𝑎11𝑌1(𝑡−1) + 𝑎12𝑌2(𝑡−1) + 𝑒1𝑡

𝑌2𝑡 = 𝑎20 + 𝑎21𝑌1(𝑡−1) + 𝑎22𝑌2(𝑡−1) + 𝑒2𝑡

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 64 -

Here, 𝑌1𝑡 and 𝑌2𝑡 represent the values of the two variables at time ttt, the aija_{ij}aij

coefficients are parameters to be estimated, and 𝑒1𝑡, 𝑒2𝑡 are white noise error terms. The model

shows how each variable depends not only on its own lagged values but also on the lagged

values of the other variable.

General VAR(p) Model (for k variables):

Let 𝑌𝑡 = (𝑦1𝑡, 𝑦2𝑡, … , 𝑦𝑛𝑡) denote an (𝑛 × 1) vector of time series variables. The basic 𝑝-lag

vector autoregressive VAR (𝑝) model has the form:

𝑌𝑡 = 𝐴 + 𝐵1𝑌𝑡−1 + 𝐵2𝑌𝑡−2+,… , 𝐵𝑝𝑌𝑘−𝑝 +∈𝑡 (7)

where, A is (𝑛 × 1) vector of intercepts, 𝐵𝑖 (𝑖=1, 2, …, 𝑝) is 𝑘 × 𝑘 matrices of parameters and

∈𝑡 ~𝑖𝑖𝑑𝑁(0, Σ) (Lama et al. 2016). The number of parameters to be estimated in the VAR

model is 𝑘(1 + 𝑘𝑝)which increases with the number of variables (𝑘) and number of lags (𝑝).

Illustrative Example:

Here we have two variables:

• 𝑌1: Delhi Tomato Price

• 𝑌2: Lucknow Tomato Price

A VAR(1) model would look like:

𝑌1𝑡 = 𝑎10 + 𝑎11𝑌1(𝑡−1) + 𝑎12𝑌2(𝑡−1) + 𝑒1𝑡

𝑌2𝑡 = 𝑎20 + 𝑎21𝑌1(𝑡−1) + 𝑎22𝑌2(𝑡−1) + 𝑒2𝑡

Here, both variables are explained by each other’s past, without assuming which one is

exogenous.

In this system, both the Tomato prices are influenced by their own past values and by each

other’s past values. Importantly, the model does not assume both causes price or vice versa in

advance; instead, it lets the data determine the direction and strength of the interrelationships.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 65 -

4. Steps in Building a VAR Model

Building a VAR model involves a structured sequence of steps to ensure reliable estimation

and forecasting. The first and most critical step is to check whether the time series data are

stationary, as VAR models require stationary input. This is typically assessed using unit root

tests such as the Augmented Dickey-Fuller (ADF) test. If any series is found to be non-

stationary, it must be transformed—most commonly through differencing—to achieve

stationarity.

Once stationarity is ensured, the next step is to determine the optimal lag length for the model.

This is crucial because including too few lags may omit important dynamics, while too many

can lead to overfitting. Lag selection is guided by information criteria such as the Akaike

Information Criterion (AIC), the Bayesian Information Criterion (BIC), or the Hannan-Quinn

Criterion (HQIC), which balance model fit with complexity. With the lag length decided, the

VAR model is then estimated using Ordinary Least Squares (OLS) method. Each equation in

the system is estimated separately, taking advantage of the fact that OLS remains efficient in

this setup due to the identical regressors across equations.

Finally, after the model has been estimated, it can be used to forecast future values of the

variables. VAR models are particularly valuable when the time series under study influence

each other, as they can capture and utilize these interdependencies in the forecasting process.

5. Why Use VAR?

VAR models are especially useful because they can capture the complex dynamic

interdependencies among multiple time series. They are particularly well-suited for

forecasting, policy analysis, and simulations. In applied research, VAR has been widely used

in macroeconomic modeling (e.g., studying the relationship between inflation, interest rate,

and GDP), in financial markets (e.g., modeling stock prices and returns), and in agriculture

(e.g., analyzing the relationship between rainfall, fertilizer use, and crop yields). VAR provides

a framework where researchers can model systems of equations without requiring strong

assumptions about which variables are exogenous or endogenous.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 66 -

6. Limitations

Despite their flexibility, VAR models come with certain limitations. One major issue is that

the model requires all variables to be stationary. Non-stationary series must be transformed,

which may lead to loss of long-run relationships unless a cointegrated VAR (like VECM) is

used. Another problem is the large number of parameters, especially as the number of variables

and lag length increases. This can lead to overfitting, especially in small samples. Additionally,

VAR models do not imply causality — just because one variable helps predict another does

not mean it causes it. Therefore, further testing such as Granger causality is necessary to

establish directional relationships.

7. Tools for Implementation

VAR models can be implemented using various statistical software. In R, the vars package is

commonly used, which includes functions like VAR() for model, and for predict() for

forecasting. In Python, the statsmodels.tsa.api.VAR module provides similar functionality.

Both tools allow for comprehensive analysis and visualization of multivariate time series using

the VAR framework.

R Practical

Data Used:

• Source: Simulated or actual tomato price data from two Indian cities:

o Tomato_Delhi.csv

o Tomato_Lucknow.csv

• Structure: Each CSV contains price data (assumed to be in column 2).

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 67 -

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 68 -

Stationarity Check (ADF Test):

Performed using the adf.test() from the tseries package.

Variable ADF Test Statistic p-value Stationarity

y1 -6.7236 0.01 Stationary

y2 -7.6918 0.01 Stationary

Conclusion: Both series are stationary at 1% level, meaning no differencing is needed.

VAR Estimation Results for y1 (Delhi):

Equation:

y1_t = 𝛽₁·y1_{t-1} + 𝛽₂·y2_{t-1} + 𝛽₃·y1_{t-2} + 𝛽₄·y2_{t-2} + constant

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 69 -

Coefficient Estimate p-value Significance

y1.1 0.5426 0.000349 ***

y2.1 0.1753 0.2252 Not Sig.

y1.2 -0.6493 2.08e-05 ***

y2.2 0.4359 0.0021 **

const 561.2837 6.85e-07 ***

• Adjusted R²: 0.4484

• F-statistic: Highly significant (< 2.2e-16)

• Interpretation: Prices in Delhi are significantly influenced by their own lags and

Lucknow’s second lag.

VAR Estimation Results for y2 (Lucknow):

Equation:

y2_t = 𝛽₁·y1_{t-1} + 𝛽₂·y2_{t-1} + 𝛽₃·y1_{t-2} + 𝛽₄·y2_{t-2} + constant

Coefficient Estimate p-value Significance

y1.1 0.2449 0.0948 . (marginal)

y2.1 0.6669 5.48e-06 ***

y1.2 -0.6802 5.14e-06 ***

y2.2 0.2808 0.0423 *

const 698.3248 7.98e-10 ***

• Adjusted R²: 0.5498

• F-statistic: < 2.2e-16

• Interpretation: Lucknow prices are strongly affected by Delhi’s 2nd lag and its own

past values.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 70 -

 Residual Diagnostics:

• Residual Correlation:

o y1 and y2: 0.8483 → Strong positive correlation between model residuals.

• Covariance Matrix: Shows non-zero interaction between variables → joint modeling

appropriate.

Conclusion:

• VAR modeling provides powerful insights into interconnected price behavior over

space and time.

• Strong spatial linkages suggest price transmission between Delhi and Lucknow.

• This model can be extended to other crops and linked with climatic parameters to assess

and forecast abiotic stress impacts.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 71 -

Suggestion Reading:

• Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series

analysis: forecasting and control. John Wiley & Sons.

• Lama, A., Jha, G. K., Gurung, B., Paul, R. K., and Sinha, K. (2016). VAR-MGARCH

models for volatility modelling of pulses prices: An Application. J. Indian Soc. Agric.

Stat, 145-151

• Kumar, R. R., and Jha, G. K. (2017). Examining the co-movement between energy and

agricultural commodity prices in India. Journal of the Indian Society of Agricultural

Statistics, 71(3), 241-252

• Sathianandan T V. 2007. Vector time series modeling of marine fish landings in Kerala.

Journal of the Marine Biological Association of India, 49(2): 197–205

• Yashavanth, B. S., Singh, K. N., Paul, A. K., and Paul, R. K. (2017). Forecasting prices

of coffee seeds using vector autoregressive time series model. Indian Journal of

Agricultural Sciences, 87(6), 754-758

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 72 -

Introduction to Functional Time Series Analysis
Roshini Priya C H1 and Santosha Rathod2

1Professor Jayashankar Telangana Agricultural University, Hyderabad -500030
2ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

Email: roshini7sn@gmail.com

1. Introduction

A time series is a series of data points indexed (or listed or graphed) in time order. Most

commonly, a time series is a sequence taken at successive equally spaced points in

time. Functional data often arise from measurements obtained by separating an almost

continuous time record into natural consecutive intervals, for example days. Functional time

series consist of random functions observed at regular time intervals. Examples of functional

time series whose sample elements are recorded sequentially over time are frequently

encountered in many disciplines. For example, in demography and epidemiology, researchers

observe age-specific mortality rate or fertility rate curves over many years, and are interested

in forecasting future mortality/fertility rate curves. Functional time series consist of random

functions observed at regular time intervals. The functions thus obtained from a timeseries {Xk,

k є Z} where each Xk is a (random) function Xk(t), t є [a, b]. Functional data pertains to datasets

in which each observation represents a function defined over a continuous domain. FDA deals

with data that are naturally viewed as functions, such as curves or surfaces, and is crucial for

analysing high-dimensional data efficiently.

 A functional time series (FTS) arises when functional objects (curves) are collected

sequentially over time. Functional time series (FTS) analysis is an emerging area in statistics

designed for data where each observation is a function, such as daily or seasonal curves of crop

yields, rather than a single value. Functional data analysis (FDA) arises naturally in this context

to exploit the information recorded over a continuum such as time or space. In contrast to

conventional scalar or multivariate data, functional data retains the complete functional

characteristics of the observations, encompassing their shape, evolution, and variability. FDA

is applied widely across fields such as medicine, finance, agriculture, and engineering, enabling

more accurate predictions and insights by leveraging the functional nature of the data.

Functional data analysis also involves estimating functional parameters describing data that are

not themselves functional, and estimating a probability density function for rainfall data is an

example. A theme in functional data analysis is the use of information in derivatives.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 73 -

Why Use FTS?

• Handles high-dimensional data efficiently

• Reduces noise and enhances interpretability

• Better suited for seasonal and long-term forecasting

Functional Data Analysis (FDA) enables to model, analyse, and interpret continuous variation,

uncovering patterns and relationships that traditional methods may miss. By representing data

as functions, FDA allows for operations like differentiation, integration, and smoothing, which

facilitate deeper exploration of data structure and variation. By extending time series analysis

principles to functional data, FTS incorporates temporal dependencies and patterns that

manifest both within and between these observed curves. Among the numerous existing

contributions, one-step-ahead functional time series forecasting, that is, one-step-ahead

prediction of a curve-valued time series, has been applied in several practical studies. Like

many classical methods for time series forecasting, for example, those based on the Auto

Regressive Integrated Moving Average (ARIMA) family models, the benchmark methods for

FTS forecasting are based on fitting some statistical model of some approximated data

generation. The most common is to fit ARIMA or Variational Auto Regressive (VAR) models

to the Functional Principal Components Scores (FPC) of the functions, see Functional Auto

Regressive (FAR) model.

A FTS is considered (weakly) stationary if it satisfies two conditions: (i) the mean function,

denoted as μt, remains independent of time, that is, μt = μ. (ii) The autocovariance operator at

lag h, denoted as Ch, solely depends on the time distance and is represented as Ch := Ct,t+h =

C0,h.

Model using multivariate time series with as many dimensions as observations per year, such

that every observation of the time series corresponds to the data collected during the entire

year: Y(t) = (X(t,1), …, X(t,d)). But the dimension is very high (365 dimensions to be precise).

We can reduce the dimension by reducing the frequency of the observations but we lose

information. A final approach is to consider the data as a functional time series Y(t, x), where

we have a function Y(.,x) for every year t with Y(t,i) = X(t,i). In this case, the yearly

temperature is viewed as a function in time and every observation corresponds to a function,

which describes the yearly temperature.

https://arxiv.org/html/2404.16598v1

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 74 -

A wide array of modelling approaches has been developed for FTS, reflecting the complexity

and richness of functional data. These models are typically classified into several categories:

• Parametric models, such as functional autoregressive (FAR) and functional moving

average (FMA) models, which extend classical time series models to the functional

domain by capturing linear temporal dependence between curves.

• Nonparametric models, including kernel regression and smoothing methods, which

make minimal assumptions about the underlying process and rely on data-driven

techniques to capture complex dependencies.

• Semiparametric models, which combine linear and nonlinear components to flexibly

model both structured and unstructured variation in the data.

• Dimension reduction and score-based models, where functional principal component

analysis (FPCA) is used to extract key features (scores) from the curves, and these scores

are then forecasted using standard time series methods.

• Multivariate and grouped FTS models, which handle multiple related functional time

series simultaneously, capturing both within- and between-group dependencies

Daily temperature in Sydney from

2013 to 2017; x-axis: time, y-axis:

temperature in Celsius;

Temperature in Sydney for

different years; x-axis: time, y-

axis: temperature in Celsius;

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 75 -

Exploring Variability in Functional Data:

Any data analysis begins with the basics: estimating means and standard deviations.

Functional Principal Components Analysis:

Goal of FPCA:

▪ Reduce the infinite-dimensional functional data into a finite number of components.

▪ Find a set of orthogonal basis functions (eigenfunctions) that capture the most

variability.

Optimal choice of the number of components K needed for the approximation which gives the

best trade-off between bias and variance.

There are several ad hoc procedures that are routinely applied in multivariate PCA, such as the

scree plot or the fraction of variance explained by the first few PC components, which can be

directly extended to the functional setting.

Basis Function Systems for Constructing Functions

We use a set of functional building blocks ∅(𝑘); k = 1; : : : ;K called basis functions,

which are combined linearly. That is, a function x(t) defined in this way is expressed

in mathematical notation as

 𝑥(𝑡) = ∑ 𝑐𝑘 ∅𝑡(𝑡) = 𝑐
′ ∅(𝑡),𝐾

𝑘=1 …………….(1)

and called a basis function expansion. The parameters c1, c2 , . . . , cK are the coefficients

of the expansion. We often want to consider a sample of N functions,

𝑥(𝑡) = ∑ 𝑐1𝑘 ∅𝑘(𝑡),
𝐾
𝑘=1 i=1,2,3,…,N and in this case matrix notation for (1) becomes

 x(t) = C∅(t);

where x(t) is a vector of length N containing the functions xi(t), and the coefficient

matrix C has N rows K columns.

The notion of a basis system is hardly new; a polynomial such as x(t) = 18t4-2t3 +√17t2 +

𝜋/2 is just such a linear combination of the monomial basis functions1; t; t2; t3; and t4 with

coefficients 𝜋 /2, 0, √17, -2, and 18, respectively. Within the monomial basis system, the

single basis function 1 is often needed by itself, and it the called as constant basis system. But

polynomials are of limited usefulness when complex functional shapes are required. Therefore

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 76 -

we need heavy lifting two basis systems: Splines and Fourier Series. These two systems often

need to be supplemented by the constant and monomial basis systems.

For each basis system we need a function in either R or MATLAB to define a specific set of K

basis functions ∅𝑘 . These are the create functions. Here are the calling statements of the create

functions in R that set up constant, monomial, Fourier and spline basis systems, omitting

arguments that tend only to be used now and then as well as default values:

basisobj = create.constant.basis(rangeval)

basisobj = create.monomial.basis(rangeval, nbasis)

basisobj = create.fourier.basis(rangeval, nbasis, period)

basisobj = create.bspline.basis(rangeval, nbasis, norder, breaks)

rangeval argument specifies the lower and upper limits of the values of argument t and is a

vector object of length 2. For example, if we need to define a basis over the unit interval [0;1],

we would use a statement like rangeval = c(0,1).

The second argument nbasis specifies the number K of basis functions. It does not appear in

the constant basis call because it is automatically 1.

Fourier Series for Periodic Data and Functions:

Many functions are required to repeat themselves over a certain period T, as would be required

for expressing a seasonal trend in a long time series. Fourier basis functions are arranged in

successive sine/cosine pairs, with both arguments within any pair being multiplied by one of

the integers 1, 2 ,3,….up to some upper limit m. If the series contains both elements of each

pair, as is usual, the number of basis functions is K = 1+2m.

Only two pieces of information are required to define a Fourier basis system:

• the number of basis functions K and

• the period T

Example: daybasis65 = create.fourier.basis(c(0,365), 65)

Note that these function calls use the default of T =365, but if we wanted to specify some other

period T, we would use create.fourier.basis(c(0,365), 65, T)

Spline Series for Nonperiodic Data and Functions:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 77 -

Splines are piecewise polynomials. Spline bases are more flexible and therefore more

complicated than finite Fourier series. They are defined by the range of validity, the knots, and

the order. There are many different kinds of splines.

Break Points and Knots:

Splines are constructed by dividing the interval of observation into subintervals, with

boundaries at points called break points or simply breaks. Over any subinterval, the spline

function is a polynomial of fixed degree or order, but the nature of the polynomial changes as

one passes into the next subinterval. The term degree to refer the highest power in the

polynomial. The order of a polynomial is one higher than its degree. For example, a straight

line is defined by a polynomial of degree one since its highest power is one, but is of order two

because it also has a constant term. A spline basis is actually defined in terms of a set of knots.

Order and Degree:

Order four splines are often used, consisting of cubic polynomial segments (degree three), and

the single knot per break point makes the function values and first and second derivative values

match.

To summarize, spline basis systems are defined by the following:

• the break points defining subintervals,

• the degree or order of the polynomial segments, and

• the sequence of knots.

The number K of basis functions in a spline basis system is determined by the relation

 number of basis functions = order + number of interior knots

By interior here we mean only knots that are placed at break points which are not either at the

beginning or end of the domain of definition of the function.

Example:

13 order four B-splines corresponding to nine equally spaced interior knots over the interval

[0;10], constructed in R by the command

 splinebasis = create.bspline.basis(c(0,10), 13)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 78 -

The B-spline basis system has a property that is often useful: the sum of the B-spline basis

function values at any point t is equal to one.

Other Basis Systems

The exponential basis, a set of exponential functions, exp(akt), each with a different rate

parameter , and created with function create.exponential.basis.

²The polygonal basis, defining a function made up of straightline segments, and created with

function create.polygonal.basis.

The power basis, consisting of a sequence of possibly non integer powers and even negative

powers, of an argument t. These bases are created with the function create.power.basis.

Methods for Functional Basis Objects:

Basis evaluation functions

 basismatrix = eval.basis(tvec, mybasis)

 basismatrix = eval_basis(tvec, mybasis)

where argument tvec is a vector of n argument values within the range used to define the basis,

and argument mybasis is the name of the basis system that you have created. The resulting

basismatrix is n by K.

Adding Coefficients to Bases to Define Functions:

Coefficient Vectors, Matrices and Arrays:

Once we have selected a basis, we have only to supply coefficients in order to define an object

of the functional data class (with class name fd). If there are K basis functions, we need a

coefficient vector of length K for each function that we wish to define. If only a single function

is defined, then the coefficients are loaded into a vector of length K or a matrix with K rows

and one column. If N functions are needed, say for a sample of functional observations of size

N, we arrange these coefficient vectors in a K by N matrix.

Example: coefficients for mean temperature for each of the 35 weather stations organized into

the 65 by 35 matrix coefmat:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 79 -

 tempfd = fd(coefmat, daybasis65)

Labels for Functional Data Objects:

Adding labels to functional data objects is a convenient way to supply the information needed

for graphical displays.

 fdnames = vector("list", 3)

Methods for Functional Data Objects:

As for the basis class, there are similar generic functions for printing, summarizing

and testing for class and identity for functional data objects.

There are, in addition, some useful methods for doing arithmetic on functional

data objects and carrying out various transformations. For example, we can take the

sum, difference, power or pointwise product of two functions with commands like

fdsumobj = fdobj1 + fdobj2

fddifobj = fdobj1 - fdobj2

fdprdobj = fdobj1 * fdobj2

fdsqrobj = fdobjˆ2

The mean of a set of functions is achieved by a command like

fdmeanobj = mean(fdobj)

Smoothing Using Regression Analysis:

The Linear Differential Operator or Lfd Class:

The concept of a “derivative” could itself be extended by proposing linear combinations of

derivatives, called linear differential operators.

 Smoothing is supported using the Lfd class that expresses the concept of a linear differential

operator. An important special case is the harmonic acceleration operator that we will use

extensively with Fourier basis functions to smooth periodic data.

Regression Splines: Smoothing by Regression Analysis

When smoothing function x is defined as a basis function expansion (3.1), the least squares

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 80 -

estimation problem becomes

 SSE(c) = ∑ [𝑦𝑗 − ∑ 𝑐𝑘
𝐾
𝑘

𝑛
𝑗 ∅𝑘(𝑡𝑗)]

2 = ∑ [𝑦𝑗 −
𝑛
𝑗 ∅(𝑡𝑗)𝑐]

2

The least squares estimation process can be defended on the grounds that it tends to give nearly

optimal answers relative to “best” estimation methods so long as the true error distribution is

fairly short-tailed and departures from the other assumptions are reasonably mild.

Data Smoothing with Roughness Penalties:

The roughness penalty approach uses a large number of basis functions, possibly extending to

one basis function per observation and even beyond, but at the same time imposing smoothness

by penalizing some measure of function complexity.

Choosing a Roughness Penalty:

We define a measure of the roughness of the fitted curve, and then minimize a fitting criterion

that trades off curve roughness against lack of data fit. Whatever roughness penalty we use, we

add some multiple of it to the error sum of squares to define the compound fitting criterion.

 𝐹(𝑐) = ∑ [𝑦𝑗𝑗 − 𝑥(𝑡𝑗)]
2 + 𝜆∫[𝐷2𝑥(𝑡)]2dt

where x(t) = 𝑐′ ∅(𝑡). The smoothing parameter 𝜆 specifies the emphasis on the second term

penalizing curvature relative to goodness of fit quantified in the sum of squared residuals in

the first term. As 𝜆 moves from 0 upward, curvature becomes increasingly penalized. With l

sufficiently large, D2(x) will be essentially 0.

Details of fdPar Class and smooth.basis Function:

The fdPar class:

fdPar(fdobj=NULL, Lfdobj=NULL, lambda=0, estimate=TRUE, penmat=NULL)

The arguments are as follows:

fdobj A functional data object, functional basis object, a functional parameter object or

a matrix. If it a matrix, it is replaced by fd(fdobj). If class(fdobj) == ’basisfd’, it

is converted to an object of class fd with a coefficient matrix consisting of a single column

of zeros.

Lfdobj Either a nonnegative integer or a linear differential operator object. If NULL, Lfdobj

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 81 -

 depends on fdobj[[’basis’]][[’type’]]: bspline Lfdobj = int2Lfd(max(0, norder-2)),

 where norder = norder(fdobj).

fourier Lfdobj is a harmonic acceleration operator set up for the period used to define the

basis. anything else Lfdobj <- int2Lfd(0)

lambda: A nonnegative real number specifying the amount of smoothing to be applied to the

estimated functional parameter estimate.

penmat: A roughness penalty matrix. Including this can eliminate the need to compute this

matrix over and over again in some types of calculations

Exploring the Variation:

Functional Principal Component Analysis:

In functional PCA, there is an eigenfunction associated with each eigenvalue, rather than an

eigenvector. These eigenfunctions describe major variational components. Applying a rotation

to them often results in a more interpretable picture of the dominant modes of variation in the

functional data, without changing the total amount of common variation.

Principal component analysis is implemented in the functions pca.fd in R.

pca.fd(fdobj, nharm = 2, harmfdPar=fdPar(fdobj), centerfns = TRUE)

The first argument is a functional data object containing the functional data to be analysed, and

the second specifies the number of principal components to be retained. The third argument is

a functional parameter object that provides the information necessary to smooth the

eigenfunctions if necessary.

Function pca.fd in R returns an object with the class name pca.fd, so that it is effectively a

constructor function. Here are the named components for this class.

harmonics A functional data object for the ` harmonics or eigenfunctions xj. values. The

complete set of eigenvalues m j. scores The matrix of scores ci j on the principal components

or harmonics. Varprop A vector giving the proportion 𝜇𝑗/∑𝜇j of variance explained by each

eigenfunction.

meanfd A functional data object giving the mean function.

Tests on Stationarity and Independence

In time series analysis, two functional observations are considered independent if their joint

probability can be expressed as a product of individual probabilities. A time series is deemed

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 82 -

stationary when its statistical properties, such as distribution, remain unchanged over time. For

functional data analysis, stationarity can be assessed using the CUSUM (Cumulative Sum)

statistic, which helps in identifying weak stationarity. To test the assumption of independence,

a Portmanteau-type test is commonly employed, allowing researchers to confirm or refute the

null hypothesis of independence.

Testing for weak stationarity

In time series analysis, assessing stationarity is a fundamental step, as it determines whether

temporal dynamics must be explicitly modeled. A stationary time series is one whose statistical

properties remain constant over time, implying that its behavior is predictable and consistent.

When a series is stationary, we do not need to adjust for time-dependent structural changes,

thereby simplifying the modeling process.

However, stationarity is inherently difficult to assess directly, especially when working with

finite samples. As a practical alternative, researchers often evaluate statistical moments—such

as the mean, variance, and autocovariance structure—to serve as proxies. The underlying

intuition is that if these moments remain constant over time, the distribution of the time series

can be assumed to be time-invariant, and hence, the process is likely to be stationary.

Consequently, rather than testing for strict stationarity, it is common to test for weak (or

second-order) stationarity, which requires that the mean, variance, and autocovariances are not

functions of time. If these conditions are satisfied, the time series is considered weakly

stationary and suitable for many traditional time series modeling approaches such as ARIMA,

VAR, or STARMA.

For a functional time series Y(1)(x), Y(2)(x), …, Y(n)(x), this translates into the hypotheses

for some i ∈ { 2, … , n } and

for some i ∈ { 2, … , n-h}.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 83 -

The time series Y(i) is weakly stationary if the null hypotheses are valid for any positive

integer h. Note that the first- and second-order moments of Y(i) are functions themselves. So

equality of two functions depends on the function space. In the space of continuous functions,

for example, two functions f and g are equal if they are equal in any point x, so if f(x)=g(x).

Contrarily, two functions are equal in the space of square-integrable functions L² if they

coincide in almost every point (w.r.t. the Lebesgue measure).

As in the univariate scenario, we can employ the CUSUM statistic, which basically compares

the average of the first with the average of the remaining observations. The (functional)

CUSUM statistic is defined as

Under the null hypothesis (and weak assumptions), √n C(u, x) converges weakly to a centered

Gaussian process B(u, x) with unknown covariance function in the space L²([0,1]²) with

norm ||.||₂. Contrarily, √n C(u, x) deviates to +∞ or -∞ under the alternative. So if √n C(u,

x) deviates too much from its limit B(u, x), we can reject H₀.

A Portmanteau-type test

Just as with stationarity, assessing stochastic independence directly is challenging, so we rely

on the autocovariance structure of the time series as a proxy to evaluate the extent of its

dependence. For analytical convenience, it is assumed that the time series is both stationary

and mean-centered, i.e., E[Y(i)]=0 . This assumption can be verified using a procedure similar

to the one described. The primary focus remains on autocovariances at lower lags h. In

alignment with the classical Portmanteau test framework, the following hypotheses are

considered:

As before, the second order moments of a functional time series are functions themselves, so

we formulate the hypotheses in terms of their norms.

import pandas as pd

import numpy as np

from scipy.signal import correlate2d

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 84 -

df = pd.read_csv('Sydney.csv') # Load data set

df.interpolate(inplace=True) # Impute missing values

df.drop(df.columns[[0,1,6,7]],axis=1,inplace=True) # Drop unused columns

df = df[df['Year']<2018] # Drop observations from 2018

Restructure data: rows correspond to different observations, columns are the different days

df = df.pivot(index='Year', columns=['Month','Day'], values='Minimum temperature (Degree

C)')

df.drop((2, 29), axis=1, inplace=True) # Drop 29th of February

df.index = df.index - min(df.index) # Change index

Testing for stationarity of the mean:

In order to test for stationarity of the mean, we define three auxiliary functions to calculate the

CUSUM statistic, the _L²-_norm and bootstrap replicates to approximate the quantile.

def calculate_cusum(X):

 n = X.shape[0]

 X_cusum = (np.cumsum(X) - np.tensordot(np.arange(1,n+1)/n, np.sum(X), axes=0)) / n

 return X_cusum

def calculate_l2_norm(X):

 l2_norm = np.sqrt((X**2).mean())

 return l2_norm

def generate_bootstrap_replicate(X):

 n, d = X.shape

 random_multipliers = np.random.randn(n)

 # Calculate local mean

 kernel = np.ones(2*bw+1).reshape((2*bw+1,1))

 conv_loc_mean = correlate2d(X,kernel,mode='full')[bw:-bw]

 weights = 1/np.convolve(np.ones(2*bw+1), np.ones(conv_loc_mean.shape[0]))[bw:-bw]

 local_mean = np.multiply(conv_loc_mean, weights[:, np.newaxis])

 # Calculate bootstrap replicate

 conv_arr = correlate2d(X - local_mean,np.ones(m).reshape((m,1)),mode='full')[m-1:]/

 np.sqrt(m)

 scalar_prod = np.multiply(conv_arr, random_multipliers[:, np.newaxis])

 bootstrap_replicate = scalar_prod.cumsum(axis=0)/np.sqrt(n)

 l2_norm = calculate_l2_norm(bootstrap_replicate)

 return l2_norm

 n = df.shape[0]

test_statistic = np.sqrt(n) * calculate_l2_norm(calculate_cusum(df).to_numpy())

m = 5

bw = 25

K = 1000

alpha = 0.05

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 85 -

bootstrap_replicates = np.zeros(K)

for k in range(K):

 bootstrap_replicates[k] = generate_bootstrap_replicate(df)

quantile_approx = np.sort(bootstrap_replicates)[round((1-alpha)*K)]

print('Test Statistic: ' + str(round(test_statistic,3)))

print('Approximated quantile: ' + str(round(quantile_approx,3)))

if test_statistic > quantile_approx:

 print('The null hypothesis can be rejected')

else:

 print('The null hypothesis cannot be rejected')

✓ Test Statistic: 2.11

✓ Approximated quantile: 1.84

✓ The null hypothesis can be rejected

✓ The output suggests that we can reject the null hypothesis of a constant mean function.

Thus, it is unlikely that the temperature was stationary in Sydney from 1859 to 2017,

which suggests a change in climate.

Forecasting Methods

Functional Auto Regressive Moving Average Method:

Research in functional data analysis has led to functional ARIMA (FARIMA) models, which

generalise ARIMA concepts to infinite-dimensional settings. These models are mathematically

more complex and typically require specialised statistical software and expertise.

Key Steps in Practice:

1. Preprocessing: Ensure each function is well-defined and aligned (e.g., same domain,

normalisation).

2. Dimension Reduction: Use FPCA or similar techniques to reduce each function to a

set of scalar scores.

3. Stationarity Check: Check and, if necessary, difference the score series to achieve

stationarity.

4. Model Fitting: Fit ARIMA models to each principal component score series.

5. Forecasting: Predict future scores using the fitted ARIMA models.

6. Reconstruction: Combine the predicted scores with the principal components to

reconstruct the forecasted function.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 86 -

Approach Description

FPCA + ARIMA on Scores Reduce functions to scores, fit ARIMA, reconstruct functions

Nonparametric/Projection

Methods

Use projections or nonparametric techniques for curve

forecasting

R code for Functional ARIMA:

required_packages <- c("lubridate", "forecast", "fda", "fda.usc","dplyr","tidyr","readxl",

 "ggpplot2","ftsa","funtimes","STFTS")

install_if_missing <- function(packages) {

 new_packages <- packages[!(packages %in% installed.packages()[, "Package"])]

 if(length(new_packages)) {

 install.packages(new_packages, dependencies = TRUE)

 }

}

Install missing packages

install_if_missing(required_packages)

library(readxl)

library(dplyr)

library(tidyr)

library(lubridate)

library(fda)

library(ftsa)

library(ggplot2)

library(data.table)

library(fda.usc)

library(forecast)

library(funtimes)

library(STFTS)

Set working directory (assuming the file is there)

setwd("C:/Users/pc/Downloads/")

Load the Excel file and sheet

df <- read_excel("Tomato.xlsx", sheet = 1)

Data Cleaning and Preparation for Functional Data

df$date <- as.Date(df$Date, format="%Y-%m-%d")

df_processed <- df %>%

 mutate(

 year = year(Date),

 day_of_year = yday(Date)

) %>%

 filter(year %in% 2018:2024) # Filter for the specific years 2018-2024

Reshape to matrix: Years as rows, Days of Year as columns

arrival_matrix_daily <- df_processed %>%

 pivot_wider(

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 87 -

 id_cols = year,

 names_from = day_of_year,

 values_from = Arrivals,

 values_fn = mean, # Use mean in case of multiple entries per day/year

 names_sort = TRUE

) %>%

 arrange(year)

rownames(arrival_matrix_daily) <- arrival_matrix_daily$year

arrival_matrix_daily <- arrival_matrix_daily %>%

 dplyr::select(-year) %>%

 as.matrix()

print("Dimensions of initial arrival_matrix_daily (Years x Days):")

print(dim(arrival_matrix_daily))

Likely 7x366 if 2020 or 2024 is present

Remove the last column if there's a 366th day (leap year) to make it consistent

This assumes you want a 365-day domain for all functions

if (ncol(arrival_matrix_daily) > 365) {

 arrival_matrix_daily <- arrival_matrix_daily[, 1:365]

}

print("Dimensions after removing possible 366th day (Years x Days):")

print(dim(arrival_matrix_daily)) # Should now be 7x365

Define evaluation points (days 1 to 365)

argvals <- 1:ncol(arrival_matrix_daily)

rangeval <- range(argvals)

Create Fourier basis

nbasis <- 21

fourier_basis <- create.fourier.basis(rangeval = rangeval, nbasis = nbasis)

Smooth the data to create functional data objects (7 functions)

fd_smooth <- smooth.basis(argvals = argvals, y = t(arrival_matrix_daily), fdParobj =

fourier_basis)$fd

plot(fd_smooth,main="Smoothened functions")

print("Number of functional observations after smoothing:")

print(length(fd_smooth$coefs[1,])) # Should be 7

fd_matrix <- eval.fd(eval_points, fd_smooth)

print("Dimensions of evaluated functional data matrix (Days x Years):")

print(dim(fd_matrix)) # Should be 365x7

fts_obj <- fts(eval_points, y = fd_matrix)

print("Number of functional observations in fts object:")

print(dim(fts_obj$y)[2])

spatial_diff2_matrix <- apply(fd_matrix, 2, diff, differences = 1)

print(dim(spatial_diff2_matrix))

spatial_argvals <- argvals[-(1:2)] # Remove the first two points

result_spatial_diff2 <- T_stationary(

 sample = spatial_diff2_matrix, # Pass the 363x7 matrix

 L = 21, # Number of basis functions (adjust based on 363 domain?)

 J = 500, # Truncation level (adjust based on 363 domain?)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 88 -

 MC_rep = 1000, # Number of Monte Carlo replications

 cumulative_var = 0.90,# Variance explained for dimension reduction within

 Ker1 = FALSE,

 Ker2 = TRUE,

 h = ncol(spatial_diff2_matrix)^0.5, # Default h calculation is correct for N=7

 pivotal = FALSE,

 use_table = FALSE,

 significance = "5%"

)

cat("\nStationarity test p-value for the SECOND SPATIAL DIFFERENCE:",

result_spatial_diff2$p.value, "\n")

class(spatial_diff2_matrix) #"matrix" "array"

train_matrix <- spatial_diff2_matrix[, 1:6] # 363 x 6

test_matrix <- spatial_diff2_matrix[, 7, drop = FALSE]

spatial_argvals <- 1:nrow(spatial_diff2_matrix) # 1:363

fts_train <- fts(spatial_argvals, y = train_matrix)

fts_test <- fts(spatial_argvals, y = test_matrix)

Fit model to training data

fit_model <- ftsm(fts_train)

Forecast the next curve (test year)

fc <- forecast(fit_model, h = 1,method = "arima")

Conclusion:

 In the present study, relevant techniques were applied to develop a functional ARIMA model

for forecasting Tomato Arrivals. The comparison study revealed that FARIMA outperforms

classical ARIMA model in forecasting Tomato Arrivals.

References:

✓ Hyndman, R.J. and Ullah, M.S. 2007. Robust forecasting of mortality and fertility rates.

A functional data approach. Computational Statistics & Data Analysis. 51(10):4942-

4956.

✓ Ramsay, J.O. and Silverman, B.W. (2005). Functional Data Analysis. Springer.

✓ Ramsay, J.O., Hooker, G. and Graves, S. (2009) Functional Data Analysis with R and

MATLAB Springer.

✓ Kokoszka, P. and Reimherr, M. (2017). Introduction to Functional Data Analysis.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 89 -

Trend Impact Analyss and its Application

Mrinmoy Ray1, Ramasubramanian V2, Santosha Rathod3, Gayathri Chitikela4,

Ponnaganti Navyasree3

1-AKMU, ICAR-Indian Agricultural Research Institute, New Delhi

2-ICAR-National Academy of Agricultural Research management, Hyderabad

3-ICAR-National Institute of Abiotic Stress Management, Baramati

4-Professor Jayashankar Telangana Agricultural University, Hyderabad, India

Email: mrinmoy4848@gmail.com

Introduction

Trend Impact Analysis (TIA) is an advanced forecasting technique that extends traditional time

series analysis by explicitly accounting for the potential effects of unexpected or external

events, known as interventions on an existing trend. Unlike purely statistical extrapolation

methods, which assume that past patterns will continue unchanged, trend impact analysis

recognizes that real-world time series are often disrupted by unforeseen forces such as policy

changes, economic shocks, technological innovations, natural disasters, pandemics, or other

rare but influential events. In agricultural and environmental sciences, trend impact analysis is

especially important because external interventions; like the introduction of a new crop variety,

sudden pest outbreaks, extreme weather events, or government policy reforms can dramatically

alter the trajectory of production, prices, or yields. By combining quantitative time series

models with structured expert judgment or explicit intervention variables, TIA provides a

practical way to integrate both historical data and anticipated future disruptions into

forecasting. The core idea of trend impact analysis is to identify the point of intervention,

measure its effect on the mean level or trend of the series, and model the pattern of this impact

over time. This can be achieved through parametric statistical methods such as the ARIMA

Intervention Model, where the intervention is built directly into the ARIMA framework by

adding an intervention component with appropriate indicator variables. Depending on the

nature of the event, the effect may be immediate and temporary (pulse), sudden and permanent

(step), or gradual but increasing (ramp).

Trend impact analysis is widely used in agricultural research, social sciences, economics, and

policy planning to assess the consequences of unique events on production, market dynamics,

supply chains, or resource use. It not only provides more realistic forecasts but also helps

decision-makers understand possible future scenarios under different assumptions. In modern

applications, trend impact models can also be combined with machine learning techniques,

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 90 -

such as Artificial Neural Networks (ANNs) and hybrid approaches, to capture non-linear

patterns and complex interactions when interventions occur. This lecture note introduces the

ARIMA Intervention Model, explains its components, types of interventions, coding of

indicator variables, and demonstrates how it can be implemented using open-source tools like

the forecast package in R. It also touches on advanced extensions, such as the NARX

(Nonlinear Autoregressive Model with Exogenous Inputs), which integrates intervention

effects into neural network frameworks for more flexible modeling of dynamic systems

impacted by external forces.

Trend Impact Analysis plays an important role in understanding and forecasting climatic

variables that are often disrupted by unexpected natural events or human activities. Climate

time series such as rainfall, temperature, drought indices, or humidity can show abrupt changes

due to phenomena like extreme weather events, major floods, prolonged droughts, or policy

actions like large-scale afforestation or emission reduction programs. By applying the ARIMA

Intervention Model, researchers can identify when such interventions or events occur and

measure how they shift the mean level or trend of a climatic variable over time. For more

complex and nonlinear climate dynamics, the NARX (Nonlinear Autoregressive Model with

Exogenous Inputs) is useful for modeling situations where the impact of an external factor

unfolds in a nonlinear way. For example, gradual land use change, deforestation, or changes in

irrigation patterns may have delayed and nonlinear effects on local temperature and rainfall.

By combining lagged climate variables with external drivers, the NARX model captures these

intricate relationships, helping researchers develop better forecasts and design climate

adaptation strategies.

ARIMA Intervention Model

ARIMA Intervention model was developed by Box and Tiao (1975). Time series

intervention analysis is an application of modelling procedures for incorporating the effect of

exogeneous forces or interventions in time series analysis. This intervention can be government

policies, strikes, earthquakes, price changes, floods, pandemic and other irregular events. It

causes unusual changes in time series. So, simply we can say that intervention analysis in time

series refers to the analysis of how mean level of a series change after an intervention. An

intervention model is given by

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 91 -

 𝑌𝑡 =
𝜔(𝐵)

𝛿(𝐵)
𝐵𝑏𝐼𝑡 +

𝜃(𝐵)

𝜙(𝐵)
𝜀𝑡

 Yt = [Intervention component] * It + ARIMA model

Where Yt =dependent variable

It = indicator variable coded according to the type of intervention.

(B) = 1+ 1 B +… r B
r – slope parameter.

 (B)= 0+ 1 B +… s B
s – impact parameter.

(B) = 1- 1 B- 2B
2 - …- p B

p- Autoregressive parameter.

 (B) = 1- 1 B- 2B
2-… - q B

q – Moving average parameter.

 b = delay parameter, B=Backshift operator i.e. Ba Yt =Yt-a, t = White noise or error term.

Types of Intervention

Time series interventions are broadly classified as step intervention, pulse/point

intervention and ramp intervention based on nature and duration of interventions effects.

Step intervention:

 It happens at a certain point of time and continues to exists in the subsequent time

periods. The step intervention’s impact may remain constant over time, or it may increase or

decrease. this type of intervention occurs in agriculture when a new variety, pesticide, or

economic policy is introduced.

Pulse Intervention

 It happens only for a short period of time, but the impact of these type of intervention

can last only for that time period or may last for a longer period of time. For example; in

agriculture these types of interventions are seen where there is an extreme drought, flood, or

insect-pest infestation.

Ramp Intervention

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 92 -

It happens at a specific point in time and continues to exist with rising severity in the

subsequent time periods. The impact of this action will continue to increase over time. For

example, the price of agricultural commodity increases over a period of time.

Indicator variables:

 The range of values that an intervention variable can take is generally determined by

the type of intervention. For step intervention

 It = 0, t  T, 1, t  T

Where T is the time of intervention when it is first occurred.

For Pulse intervention

 It = 0, t T

 1, t = T

For Ramp intervention

 It = 0, t  T

 t-T+1, t  T

The Table 3.3 shows an example of indicator coding for types of interventions,

assuming that the intervention took place at 4th time point. Fitting the intervention model

follows the same three steps as the ARIMA model i.e. identification, estimation, diagnostic

checking.

The “forecast” package (Hyndman et al. 2008) in R software was used to build for

ARIMA intervention model. The intervention parameter indicates the change, either the impact

is positive, negative or no impact due to occurrence and spread of covid -19 pandemic. A model

was considered valid when all the coefficients were significant and the residuals were found to

be non-autocorrelated by means of Ljung-Box test. For selection of suitable candidate models,

the loglikelihood value, minimum Akaike Informative Criteria (AIC) and Bayesian

Informative Criteria (BIC) were used to select the best model.

 Table: Values of intervention variable under different functions

 Time t Step intervention It Pulse intervention It Ramp intervention It

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 93 -

1 0 0 0

2 0 0 0

3 0 0 0

4= T 1 1 1

5 1 0 2

6 1 0 3

7 1 0 4

8 1 0 5

Neural Network Intervention Model

 The Nonlinear autoregressive exogeneous model is a recurrent dynamic neural

network. The model works same as Artificial Neural Networks (ANN) with exogenous

variables which is discussed below. Lagged values of the intervention variable were considered

as exogeneous variables. Since we have used intervention component in ANN, which is

nomenclature as ANN Intervention model henceforth (Vega et al 2001). The classical ANN

model allows making forecasts based on only past values of the forecast variable. The model

assumes that future values of a variable depend on its past values, as well as on the values of

past exogeneous variables. The ANN Intervention model is an extended version of the ANN

model, where it includes other independent (predictor) variables called as intervention variable,

the model is also referred to as the vector ANN model.

ANN forecasting models typically assume that each observed value is an unknown

nonlinear function F of c lags t1, t2, …, tc, for a given univariate time series {xt, t = 1,2, …,

n}, where xt ϵ R,

 xt = F (xt-t1, xt-t2, …, xt-tc) + t

Where the error t is error of zero mean. Next, we assume that m interventions have

been observed throughout time periods r1, r2, …, rm. Depending on the nature of the

interventions., we define m auxiliary variables 1
t, 2

t, …, m
t. As a result, we can investigate

a nonlinear forecasting model with c lags t1, t2, …, tc and m interventions;

 xt = F (xt-t1, xt-t2, …, xt-tc , 1
t, 2

t, …,m
t) + t

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 94 -

Fig.: Diagram of ANN with Intervention variable

`Illustration

The time series intervention model based TIA has been employed for envisioning crop yield scenarios

for maize, potato, rice, tomato, okra, cabbage, mustard yield.

Table1: Parameters for Maize Yield Scenario

Initial Impact

(percentage)

10

Maximum Impact

(percentage)

25

Steady State Impact

(percentage)

20

Time to maximum impact

(year)

7

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 95 -

Time to steady state impact

(year)

15

Unprecedented technology Bt Maize

Fig : Maize yield scenarios

Table2: Parameters for Potato Yield Scenario

Initial Impact

(percentage)

5

Maximum Impact

(percentage)

20

Steady State Impact

(percentage)

13

Time to maximum impact (year) 5

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 96 -

Time to steady state impact (year) 8

Unprecedented technology Transgenic potato

Fig 4: Potato yield scenarios

Table: Parameters for Rice Yield Scenario

Initial Impact

(percentage)

7

Maximum Impact

(percentage)

20

Steady State Impact

(percentage)

18

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 97 -

Time to maximum impact (year) 7

Time to steady state impact (year) 15

Unprecedented technology Golden Rice

Fig.: Rice yield scenarios

Table4: Parameters for tomato Yield Scenario

Initial Impact

(percentage)

6

Maximum Impact

(percentage)

10

Steady State Impact

(percentage)

9

Time to maximum impact (year) 5

Time to steady state impact (year) 10

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 98 -

Unprecedented technology Transgenic tomato

Fig.: Tomato yield scenarios

Table: Parameters for okra Yield Scenario

Initial Impact

(percentage)

2

Maximum Impact

(percentage)

10

Steady State Impact

(percentage)

7

Time to maximum impact (year) 10

Time to steady state impact (year) 5

Unprecedented technology Transgenic okra

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 99 -

Fig .: Okra yield scenarios

Table: Parameters for Cabbage yield Scenario

Initial Impact

(percentage)

4

Maximum Impact

(percentage)

15

Steady State Impact

(percentage)

12

Time to maximum impact (year) 8

Time to steady state impact (year) 10

Unprecedented technology Transgenic cabbage

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 100 -

Fig: Cabbage yield scenarios

Table : Parameters for Mustard yield Scenario

Initial Impact

(percentage)

30

Maximum Impact

(percentage)

50

Steady State Impact

(percentage)

45

Time to maximum impact (year) 3

Time to steady state impact (year) 10

Unprecedented technology Bt Mustard

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 101 -

Fig 9: Mustard yield scenarios

Conclusion

In this study, by integrating Delphi, GOS tree and time series intervention-based TIA a

methodology has been proposed for envisioning crop yield scenarios. The proposed approach

has been employed for envisioning crop yield scenarios of maize, potato, rice, tomato, okra,

cabbage, mustard at All-India level considering the impact of Bt technology.

Trend Impact Analysis (TIA) offers a valuable extension to classical time series forecasting

methods by explicitly integrating the effects of unexpected interventions or exogenous forces

that can significantly alter the trajectory of a variable of interest. Unlike traditional time series

models that assume continuity of past trends, intervention-based models like the ARIMA

Intervention Model and its nonlinear counterpart, NARX, help capture the real impact of

sudden or gradual external events, resulting in more realistic and actionable forecasts.

In this study, by combining structured expert judgment (Delphi), GOS tree analysis, and time

series intervention modeling, a robust TIA framework was developed for envisioning future

crop yield scenarios. This integrated approach was successfully applied to major crops —

including maize, potato, rice, tomato, okra, cabbage, and mustard at the All-India level to assess

the impact of Bt technology adoption. The results demonstrated that the trend intervention-

based models consistently outperformed classical time series models in capturing shifts caused

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 102 -

by technological interventions, providing more accurate and policy-relevant insights for

agricultural planning and technology foresight.

These findings highlight that TIA, especially when combined with hybrid modeling techniques

and expert inputs, can serve as an effective decision-support tool for researchers, policymakers,

and planners to understand possible future scenarios and design resilient strategies in the face

of climatic and technological disruptions.

R codes:

rm(list=ls())

library(forecast)

library(tseries)

library(TSA)

library(ggplot2)

library(tidyverse)

library(lmtest)

g=read.table(file="Gudumalkapur.txt",header=T)

head(g)

dim(g)

Box.test(g$Arrivals)

bdsTest(g$Arrivals, m = 3, eps = NULL, title = NULL, description = NULL)

a1=g$Arrivals[1:2856]

a2=g$Arrivals[2857:2887]

i1=g$Int[1:2856]

i2=g$Int[2857:2887]

Box.test(a1)

acf(a1)

pacf(a1)

############# ARIMA Fitting #########

m1=auto.arima(a1)

coeftest(m1)

accuracy(m1)

Box.test(m1$residuals)

fitted1=m1$fitted

write.csv(as.data.frame(fitted1), file="ARIMA_Fitted.csv")

f1=forecast(m1, h=30)

f11=data.frame(f1)

f12=f11$Point.Forecast

mape1=abs(a2-f12)/abs(a2)

mape11=mean(mape1)*100

mape11

write.csv(as.data.frame(f12), file="ARIMA_Forecasted.csv")

################### ANN ##########

m2=nnetar(a1,2, P=1, 5, repeats=25, xreg=NULL, lambda=NULL, model=NULL,

subset=NULL, scale.inputs=TRUE, maxit=150)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 103 -

m2

accuracy(m2)

fitted2=m2$fitted

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv")

Box.test(m2$residuals)

f2=forecast(m2, h=30)

f21=data.frame(f2)

f22=f21$Point.Forecast

mape2=abs(a2-f22)/abs(a2)

mape21=mean(mape2)*100

mape21

write.csv(as.data.frame(f22), file="ANN_Forecasted.csv")

############# ARIMA Int ###########

m3=auto.arima(a1, xreg=i1)

coeftest(m3)

accuracy(m3)

fitted3=m3$fitted

write.csv(as.data.frame(fitted3), file="ARIMA_Int_Fitted.csv")

Box.test(m3$residuals)

f3=forecast(m3, h=30, xreg=i2)

f31=data.frame(f3)

f32=f31$Point.Forecast

mape3=abs(a2-f32)/abs(a2)

mape31=mean(mape3)*100

mape31

write.csv(as.data.frame(f32), file="ARIMA_Int_Forecasted.csv")

############ ANN_Int##########

m4=nnetar(a1,2, P=1, 5, repeats=25, xreg=i1, maxit=150)

m4

accuracy(m4)

fitted4=m4$fitted

write.csv(as.data.frame(fitted4), file="ANN_Int_Fitted.csv")

Box.test(m4$residuals)

f4=forecast(m4, h=30, xreg=i2)

f41=data.frame(f4)

f42=f41$Point.Forecast

mape4=abs(a2-f42)/abs(a2)

mape41=mean(mape4)*100

mape41

write.csv(as.data.frame(f42), file="ANN_Int_Forecasted.csv")

##########Significance Comparison ##########

########## For testing set ######

dm.test(m1$residuals, m2$residuals)

dm.test(m1$residuals, m3$residuals)

dm.test(m1$residuals, m4$residuals)

dm.test(m2$residuals, m3$residuals)

dm.test(m2$residuals, m4$residuals)

dm.test(m3$residuals, m4$residuals)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 104 -

######## You have to do it for testing set also #####

Suggested Readings

• Agami, N., Omran, A., Saleh, M. & El-Shishiny, H. (2008). A enhanced approach for

trend impact analysis. Technological Forecasting & Social Change, 75, 1439-1450.

• Asan, S. S. and Asan U. (2007). Qualitative cross-impact analysis with time

consideration. Technological Forecasting & Social Change, 74, 627-644.

• Bañuls, V.A. and Turoff, M. (2011). Scenario construction via Delphi and cross-impact

analysis. Technological Forecasting and Social Change. 78(9), 1579-1602.

• Gordon, T. J. (2002). Trend Impact Analysis. AC/UNV Millennium project, Futures

Research Methodology-V 2.1(CD-ROM)

• Ray, M., Rai, A., Singh, K. N., V., Ramasubramanian and Kumar, A. (2017).

Technology forecasting using time series intervention based trend impact analysis for

wheat yield scenario in India. Technological Forecasting and Social Change, 118, 128-

133.

• Kane, J. (1972). A primer for a new cross-impact language- KSIM, Technological

Forecasting and Social Change, 4, 129-142.

• Godet, M. (1976). Scenarios of air transport development to 1990 by SMIC 74 – A new

cross impact method, Technological forecasting and social change, 9, 279-288.

• Ramasubramanian, V., Ananthan, P.S., Krishnan, M. and Vinay, A. (2017).

Technology forecasting in fisheries sector: Cross impact analysis and substitution

modeling, Journal of the Indian Society of Agricultural Statistics, 71(3), 231–239.

• Ray, M., Ramasubramanian, V., Singh, K.N., Rathod, S. and Shekhawat, R. S.

(2022).Technology Forecasting for Envisioning Bt Technology Scenario in Indian

Agriculture. Agricultural Research, https://doi.org/10.1007/s40003-022-00612-z

• Chitikela, G., Rathod, S. & Vijayakumar, S. Change point-driven interrupted time

series and machine learning models for forecasting indian food grain production.

Discov Food 5, 68 (2025). https://doi.org/10.1007/s44187-025-00350-5

• Rathod, S., Chitikela, G., Bandumula, N., Ondrasek, G., Ravichandran, S., &

Sundaram, R. M. (2022). Modeling and Forecasting of Rice Prices in India during the

COVID-19 Lockdown Using Machine Learning Approaches. Agronomy, 12(9), 2133.

https://doi.org/10.3390/agronomy12092133

• Chitikela, G., Admala, M., Ramalingareddy, V. K., Bandumula, N., Ondrasek, G.,

Sundaram, R. M., & Rathod, S. (2021). Artificial-Intelligence-Based Time-Series

Intervention Models to Assess the Impact of the COVID-19 Pandemic on Tomato

Supply and Prices in Hyderabad, India. Agronomy, 11(9), 1878.

https://doi.org/10.3390/agronomy11091878

https://doi.org/10.1007/s44187-025-00350-5
https://doi.org/10.3390/agronomy12092133

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 105 -

Time Series Analysis: Cointegration Analysis

Kanchan Sinha

ICAR-Indian Agricultural Statistics Research Institute

Library Avenue, Pusa, New Delhi-110012

Email: kanchan.sinha@icar.gov.in

1. Introduction

In econometrics, cointegration analysis is a powerful tool used to estimate and test long-run

equilibrium relationships among non-stationary time series variables such as income and

consumption, interest rates of different maturities, or stock prices. Its primary significance lies

in its ability to address challenges posed by the use of non-stationary data, which is common

in macroeconomic and financial time series. When two or more non-stationary series are

cointegrated, they share a common stochastic trend, indicating the existence of a meaningful

long-term relationship, despite short-term deviations.

A time series is considered stationary when its mean and variance remain constant over time,

and the covariance between values depends only on the lag between time points, not on the

actual time at which the covariance is computed. In contrast, non-stationary series exhibit time-

varying means or variances, complicating statistical inference and model validity. Therefore,

econometric models dealing with such series must be carefully specified to yield valid

economic interpretations.

To address non-stationarity, a common approach is to apply differencing, which transforms a

trending series into a stationary one. The number of differencing steps required to achieve

stationarity defines the order of integration. A series that becomes stationary after first

differencing is termed integrated of order one, denoted as I(1), while a stationary series without

differencing is I(0).

Cointegration analysis allows researchers to identify and model long-run relationships without

discarding essential information, unlike traditional approaches such as regression on first-

differenced data, which may lead to loss of long-term dynamics. Moreover, earlier methods

like price correlation coefficients could be misleading when applied to non-stationary data due

to the presence of unit roots, and may yield spurious relationships.

mailto:kanchan.sinha@icar.gov.in

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 106 -

In the context of market integration, cointegration plays a crucial role in understanding price

transmission mechanisms across regional or international markets. For instance, strong

cointegration between domestic and world prices suggests efficient market integration, low

trade barriers, and synchronized price movements. Conversely, weak cointegration may imply

fragmented markets and significant price disparities.

Additionally, cointegration inherently implies the existence of Granger causality among

variables indicating that prices in one market may help predict price changes in another. This

property is particularly useful for policymakers and market analysts to examine price

leadership, information flow, and the direction of causality between integrated markets.

Thus, cointegration analysis not only enhances the statistical robustness of time series models

involving non-stationary variables but also provides meaningful economic insights into the

long-run co-movements and causal interrelationships between key economic indicators.

2. Model Specification

2.1 Vector Autoregressive(VAR) process

A VAR is a simple extension of the AR(k) framework and is given by:

 𝑌𝑡 = 𝛿 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 +⋯+ 𝐴𝑘𝑌𝑡−𝑘 + 𝑢𝑡 (i)

where, 𝑢𝑡~ 𝐼𝑁(0, 𝛴)

where, 𝑌𝑡 = (𝑌1𝑡, 𝑌2𝑡, … , 𝑌𝑛𝑡)
′ is (n × 1) random vector of endogenous variables, each of the

𝐴𝑖 is an (𝑛 × 𝑛) matrix of parameters, δ is a fixed (𝑛 × 1) vector of intercept terms. Finally,

𝑢𝑡 = (𝑢1𝑡, 𝑢2𝑡 , … , 𝑢𝑛𝑡)
′ is a n-dimensional white noise or innovation process, i.e., 𝐸(𝑢𝑡) = 0,

𝐸(𝑢𝑡, 𝑢𝑡′) = 𝛴 and 𝐸(𝑢𝑡, 𝑢𝑠′) = 0 for 𝑠 ≠ 𝑡. The covariance matrix Σ is assumed to be non-

singular.

2.2 Cointegration process

Cointegration analysis is used to examine whether long-run equilibrium relationships exist

between two or more series. The long-run relationship is given as:

𝑃𝑡
1 = 𝛼0 + 𝛼1𝑃𝑡

2 + 𝜀𝑡 (ii)

Let 𝑃𝑡
1 and 𝑃𝑡

2 denote the prices of a given commodity in two distinct markets. If the error

term 𝜀𝑡 is stationary, it implies that the market prices are cointegrated. Cointegration analysis

captures the long-run equilibrium relationship between price series, even though short-term

deviations may occur. Johansen’s multivariate cointegration technique is employed to assess

the presence of cointegration between the two price series. Prior to applying the cointegration

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 107 -

test, it is essential to verify the stationarity of the series. This is done using the Augmented

Dickey-Fuller (ADF) test, which examines stationarity by regressing the original price series

with an intercept, trend, the first differences, and lagged differences. Variables that are

integrated to the same order are eligible for cointegration testing. The unit root test helps

determine the order of integration—for example, a variable integrated of order one is denoted

as I(1), while integration of order ppp is denoted as I(p). The ADF unit root test can be

formulated as follows:

∆𝑦𝑡 = 𝛽1 + 𝛽2𝑡 + 𝛿𝑦𝑡−1 + ∑ 𝛼𝑖∆𝑦𝑡−𝑖
𝑚
𝑖=1 + 𝜀𝑡 (iii)

where ∆𝑦𝑡 is a vector to be tested for cointegration, t is time or trend variable. ∆𝑦𝑡 is the first

difference ie., (∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1), 𝜀𝑡 is a white noise term. The null hypothesis that, 𝐻0: 𝛿 = 0;

signifying unit root, states that the time series is non-stationary while the alternative hypothesis,

𝐻1: 𝛿 < 0, signifies that the time series is stationary, thereby rejected the null hypothesis. Since

ADF tests tell us whether a time series is integrated or not, therefore the test is known as a

“Test for integration”.

2.3 Johansen’s Cointegration Tests

A cointegrated system can be written as:

∆𝑦𝑡 = ∑ Γ𝑖
𝑘
𝑖=1 ∆𝑦𝑡−𝑖 + 𝛼𝛽

′𝑦𝑡−𝑘 + 𝜀𝑡 (iv)

where yt is the price series, ∆𝑦𝑡 is the first difference i.e., (∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1), and the matrix

𝛼𝛽′ is n x n with rank (0 ≤ 𝑟 ≤ 𝑛), which is the rank of linear independent cointegration

relations in the vector space of matrix. The Johansen’s method of cointegrated system is a

restricted maximum likelihood method with rank restriction on matrix Π = 𝛼𝛽′. The rank of

Π can be obtained by using 𝜆𝑡𝑟𝑎𝑐𝑒 or 𝜆𝑚𝑎𝑥 test statistics. The test statistics can be written as:

𝜆𝑡𝑟𝑎𝑐𝑒 = −𝑇∑ ln (1 − 𝜆�̂�)
𝑛
𝑖=𝑟+1 ∀ 𝑟 = 0, 1, … , 𝑛 − 1 (v)

The estimated eigenvalues 𝜆�̂�’s represent the magnitude of correlation between the differenced

terms and the error-correction components. To determine the number of cointegrating

relationships, the Johansen cointegration test is applied by evaluating the following hypotheses:

the null hypothesis 𝐻0: 𝑟𝑎𝑛𝑘 𝑜𝑓 Π = 𝑟 and under alternative hypothesis, 𝐻1: 𝑟𝑎𝑛𝑘 𝑜𝑓 Π > 𝑟,

where rrr denotes the number of cointegrating vectors. This test is conducted under the

assumption that the cointegrating equation contains only an intercept (i.e., no deterministic

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 108 -

trend), whereas the original series may exhibit a trend due to non-constant mean and variance

over time, indicating non-stationarity.

Granger Causality Test

Once cointegration between the time series is established, the Granger causality test is applied

to investigate the direction of causality between the variables. If two markets are cointegrated,

it implies a long-run equilibrium relationship, and typically, the price in one market is found to

Granger-cause the price in the other market and/or vice versa. The Granger causality test thus

provides further insight into the dynamics of price transmission, indicating whether and in

which direction the causal influence flows between the series.

A VAR (2) model is applied in order to assess the causality of the price series.

(
𝑦𝑡
𝑥𝑡
) = (

𝑎
𝑏
) + [

𝑐11 𝑐12
𝑐21 𝑐22

] [
𝑦𝑡−1
𝑥𝑡−1

] + [
𝑑11 𝑑12
𝑑21 𝑑22

] [
𝑦𝑡−2
𝑥𝑡−2

] + [
𝜀1𝑡
𝜀2𝑡
] (vi)

The matrix relation can be written in individual form as:

𝑦𝑡 = 𝑎 + 𝑐11𝑦𝑡−1 + 𝑐12𝑥𝑡−1 + 𝑑11𝑦𝑡−2 + 𝑑12𝑥𝑡−2 + 𝜀1𝑡 (vii)

𝑥𝑡 = 𝑏 + 𝑐21𝑦𝑡−1 + 𝑐22𝑥𝑡−1 + 𝑑21𝑦𝑡−2 + 𝑑22𝑥𝑡−2 + 𝜀2𝑡 (viii)

The restrictions imposed to test the causality can be described as:

lags of y do not explain the value of x so, 𝑐21 = 0 and 𝑑21 = 0

Image Source: Wikipedia

Figure: Time series X Granger-causes time series Y; the patterns in X are approximately repeated in Y

after some time lag (two examples are indicated with arrows). Therefore, past values of X can be used

for the prediction of future values of Y.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 109 -

lags of x do not explain the value of y so, 𝑐12 = 0 and 𝑑12 = 0

Hence, the null hypothesis for Granger causality test is defined as:

𝐻0: 𝑐12 = 𝑑12 = 0 (𝑥𝑡 does not Granger cause 𝑦𝑡)

𝐻0: 𝑐21 = 𝑑21 = 0 (𝑦𝑡 does not Granger cause 𝑥𝑡)

2.5 Vector Error Correction Model (VECM)

If the time series are found to be cointegrated, a Vector Error Correction Model (VECM) is

estimated. The VECM can be viewed as an extension of the Vector Autoregressive (VAR)

model, augmented by an error correction term that captures deviations from the long-run

equilibrium. The VECM possesses two essential characteristics:

First, it is dynamic in nature, incorporating both lagged values of the dependent and

explanatory variables. This allows the model to capture short-run adjustments that arise from

past disequilibria and current changes in the explanatory variables.

Second, the VECM framework explicitly reveals the long-run cointegrating relationship among

the variables through the error correction term. This term quantifies the speed at which the

system returns to equilibrium after a short-term shock.

Equation (ix) presents the structure of a VECM involving three variables. The model

specification includes a constant term, the error correction component, lagged endogenous

variables, and a stochastic error term, thereby providing a comprehensive depiction of both

short- and long-run dynamics.

[

∆𝑃𝑡
𝐵

∆𝑃𝑡
𝐶

∆𝑃𝑡
𝐻

] = [
𝑐1
𝑐2
𝑐3
] + [

𝑎1
𝑎2
𝑎3
] 𝐸𝐶𝑇−1 + [

𝑏11 𝑏12 𝑏13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

] [

∆𝑃𝑡−1
𝐵

∆𝑃𝑡−1
𝐶

∆𝑃𝑡−1
𝐻

] + [

𝜀𝑡
𝑃𝐵

𝜀𝑡
𝑃𝐶

𝜀𝑡
𝑃𝐻

] (ix)

In equation (ix), 𝑃𝑡
𝐵, 𝑃𝑡

𝐶 and 𝑃𝑡
𝐻 represents time series datasets from three different markets.

The Vector Error Correction Model (VECM) is a powerful framework for analyzing both short-

run dynamics and long-run equilibrium relationships among cointegrated time series variables.

This representation is particularly valuable because it enables the estimation of how quickly

variables adjust toward their long-term equilibrium path following a deviation.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 110 -

A central feature of the VECM is the Error Correction Term (ECT), whose coefficient (denoted

typically as αi\alpha_iαi) captures the speed of adjustment back to the long-run equilibrium

after a shock. For the model to be valid and economically meaningful, the ECT coefficient

must be negative and statistically significant. A negative and significant ECT implies that when

the system deviates from equilibrium, it self-corrects in subsequent periods, restoring the

balance over time. On the other hand, the coefficients of lagged explanatory variables in the

VECM describe the short-run adjustments, revealing how immediate past changes in one

variable affect current values of others

3. Conclusion

In a developing economy like India, understanding market integration is essential for

formulating effective agricultural marketing policies, enhancing marketing efficiency, and

guiding farmers in production planning and crop diversification towards high-value

commodities. The concepts of cointegration and VECM modeling provide valuable tools for

quantifying the degree of market integration by identifying long-term price relationships and

information transmission between markets.

Such studies help researchers and policymakers assess whether markets move together in the

long run and how quickly they respond to temporary shocks. They offer crucial insights into

market efficiency, price stabilization, and the effectiveness of policy interventions, ultimately

benefiting all stakeholders in the agricultural supply chain—from producers and traders to

consumers and regulators.

4. Suggested Readings

Engle, R.F. and Granger, C.W. J. (1987) Cointegration and error correction: Representation,

estimation and testing, Econometrica, 50, 987-1007

Sinha, K, Paul, R.K. and Bhar, L. M. (2016) Price Transmission and Causality in major onion

markets of India. Journal of the Society for Application of Statistics in Agriculture and Allied

Sciences (SASAA), 1(2), 35-40

Paul, R. K. and Sinha, K. (2015) Spatial market integration among major coffee markets in

India, Journal of the Indian Society of Agricultural Statistics, 69 (3), 281-287

Sahu, P.K., Dey, S., Sinha, K. Singh, H. and Narsimaiaha, L. (2019) Cointegration and Price

Discovery Mechanism of Major Spices in India, American Journal of Applied Mathematics

and Statistics, 7(1), 18-24

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 111 -

Long Memory Time-Series Models

Ranjit Kumar Paul

ICAR-Indian Agricultural Statistics Research Institute

Library Avenue, Pusa, New Delhi-110012

Email: ranjitstat@gmail.com

Introduction

While many economic time series are inherently non-stationary and commonly require

differencing to achieve stationarity, the conventional Box-Jenkins ARIMA methodology—

which assumes that differencing of integer order is sufficient—may not always yield the best

model fit, especially in the absence of seasonal components. The traditional assumption is that

once the appropriate number of integer differences is applied, the resulting series will exhibit

rapidly decaying autocorrelations, allowing it to be adequately captured by a stationary and

invertible ARMA model. This approach has been widely applied in agriculture (Paul and Das,

2010; 2013; Paul et al., 2013a; 2013b).

However, empirical evidence suggests that some time series do not contain a further unit root

yet continue to exhibit persistent dependence over time—a phenomenon known as long

memory. Such series may not be well-described by ARMA or ARIMA models. In these cases,

a more flexible modeling approach is required—specifically, models that allow for fractional

differencing. The Autoregressive Fractionally Integrated Moving Average (ARFIMA) model

addresses this issue by incorporating a non-integer differencing parameter 𝑑. This parameter

quantifies the degree of long-range dependence in the data, where values of 𝑑 different from

zero imply the presence of long memory. The magnitude of 𝑑 reflects the strength of this

memory, and its non-integer nature has led to its association with fractal structures in time

series.

Notably, ARFIMA models offer an effective alternative to conventional ARIMA models for

series exhibiting such persistent dependencies. Estimating the long memory parameter 𝑑 using

modern techniques—such as the wavelet-based approach—has gained traction in recent

econometric research. Key contributions in the field include Robinson (1995) and Baillie et al.

(1996), who surveyed long memory modeling in econometrics, while Beran (1994) provided

insights across other disciplines. Despite the growing literature, long memory analysis in the

context of agricultural commodity markets remains underdeveloped. One of the early studies

by Helms et al. (1984) applied classical rescaled range (R/S) analysis to a limited data set of a

mailto:ranjitstat@gmail.com

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 112 -

single commodity. Given the complex dynamics and persistence often observed in agricultural

price series, there is a compelling need for further investigation into the long memory behavior

of agricultural markets, using ARFIMA models and wavelet-based techniques.

Long Memory Process

Long memory in time-series data refers to the persistence of autocorrelations across long time

lags (Robinson, 1995). In the context of time-series modeling, long memory implies that

observations are not independent; instead, each observation is influenced by events that

occurred in the distant past (Jin and Frechette, 2004). This is in contrast to short memory

processes, where the impact of past events diminishes rapidly. The autocorrelation function

(acf) of a time-series yt is defined as

 𝜌𝑘 = 𝑐𝑜𝑣(𝑦𝑡, 𝑦𝑡−1)/𝑣𝑎𝑟(𝑦𝑡) (1)

for integer lag k. A covariance stationary time-series process is expected to have

autocorrelations such that lim
𝑘→∞

𝜌𝑘 = 0 . Most of the well-known class of stationary and

invertible time-series processes have autocorrelations that decay at exponential rate, so that

𝜌𝑘 ≈ |𝑚|
𝑘, where |m|<1 and this property is true, for example, for the well-known stationary

and invertible ARMA(p,q) process. For long memory processes, the autocorrelations decay at

an hyperbolic rate which is consistent with 𝜌𝑘 ≈ 𝐶𝑘
2𝑑−1, as k increases without limit, where

C is a constant and d is the long memory parameter.

Testing of Long Memory

The Hurst exponent (H), derived from the rescaled range (R/S) analysis, is a widely used

statistical measure for detecting the presence of long memory or long-range dependence in a

time-series. Originally introduced by H.E. Hurst in hydrology, the method was later extended

and applied to economic and financial time-series by Booth et al. (1982) and Helms et al.

(1984). For a given time-series, the Hurst exponent quantifies the degree of long-term, non-

periodic dependence, reflecting how long the memory or persistence of past values influences

future observations. Specifically, the Hurst exponent indicates the average duration over which

a time series remains correlated. The R/S analysis first estimates the range R for a given n:

() () () −− −=
==

n

j
j

nj

n

j
j

nj
YYYYnR

1111
minmax (2)

where R(n) is the range of accumulated deviation of Y(t) over the period of n and Y is the

overall mean of the time-series. Let S(n) be the standard deviation of Yt over the period of n.

For a given n, there exists a statistic

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 113 -

Q(n) = R(n)/S(n) (3)

Here, n is the time scale to split total observations T into int[T/n] segments where int[.] denotes

the integer part of [.]. There will be int[T/n] estimates of R(n)/S(n) for a given n. The final

R(n)/S(n) is the average of int[T/n]’s R(n)/S(n). As n increases, the following holds:

() () HnnSnR =/ ,  is a constant.

or

() ()() nHnSnR loglog/log += (4)

Thus, H is a parameter that relates mean R/S values for subsamples of equal length of the series

to the number of observations within each equal length subsample. H is always greater than 0.

When 0.5<H<1, the long memory structure exists. If H ≥ 1, the process has infinite variance

and is nonstationary. If 0<H<0.5, anti-persistence structure exists. If H=0.5, the process is

white noise. The relationship between Hurst exponent and long memory parameter is: H=1-d,

ARFIMA Model

Fractional integration serves as the fundamental conceptual framework for characterizing long

memory in time-series data, particularly in financial and economic applications. Unlike

traditional integer-order integration, which assumes time-series are integrated of order zero

[I(0)] or one [I(1)], fractional integration provides a more flexible approach by allowing the

order of integration, denoted by 𝑑 to take on non-integer (fractional) values. This generalization

is especially useful for modeling series that exhibit long-range dependence, where the

autocorrelations decay at a slower, hyperbolic rate rather than the exponential decay observed

in short memory processes. The most commonly used model incorporating fractional

differencing is the Autoregressive Fractionally Integrated Moving Average (ARFIMA) model,

denoted by ARFIMA(p,d,q),

p: order of the autoregressive (AR) component,

𝑑: fractional differencing parameter (order of integration),

𝑞:order of the moving average (MA) component.

 (1 − 𝐿)d𝜑(𝐿)𝑦𝑡 = 𝜃(𝐿)𝑢𝑡 (5)

where 𝑢𝑡 is an independently and identically distributed (i.i.d.) random variable with zero mean

and constant variance, L denotes the lag operator; and 𝜑(𝐿) and 𝜃(𝐿) denote finite

polynomials in the lag operator with roots outside the unit circle. For d = 0, the process is

stationary, and the effect of a shock u(t) on y(t + j) decays geometrically as j increases. For d

= 1, the process is said to have a unit root, and the effect of a shock u(t) on y(t + j) persists into

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 114 -

the infinite future. In contrast, fractional integration defines the function (1 - L)-d for noninteger

values of the fractional differencing parameter d.

For -0.5< d< 0.5 the process y(t) is stationary and invertible. For such processes, the effect of

a shock u(t) on y(t+ j) decays as j increases, but the rate of decay is much slower than for a

process integrated of order zero.

In stationary time series, the autocorrelation function (ACF) decays geometrically, while in

fractionally integrated processes, it decays hyperbolically, indicating long memory. The sign

of autocorrelations aligns with the sign of the differencing parameter 𝑑. Thus, ARFIMA(p, d,

q) models effectively capture long memory more efficiently than high-order ARMA

models.Correct specification of 𝑝 and 𝑞 is crucial. As noted by Robinson (2003), under- or

over-specifying AR or MA orders can lead to inconsistent estimation of both short-term

coefficients and the long memory parameter 𝑑, causing model misidentification.

Estimation of long memory parameter

For estimating the long memory parameter, GPH estimator proposed by Geweke and Porter-

Hudak (1983) is used in the present investigaton. Robinson (1995), Hurvich et al. (1998) and

Tanaka (1999) have analyzed the GPH estimate in detail. Under the assumption of normality

for yt, it has been proved that the estimate is consistent and asymptotically normal.

Illustration (Paul, 2014)

Daily wholesale prices of pigeon pea (Arhar) from Amritsar, Bhatinda, and all-India maximum,

minimum, and modal prices from Jan 1, 2012 to Dec 31, 2013 were sourced from the Ministry

of Consumer Affairs, Govt. of India. Data from Jan 2012 to Oct 2013 were used for model

development, and the rest for validation. Figure 1 shows that the series appear stationary. To

confirm, ADF (Said & Dickey, 1984) and PP (Philips & Perron, 1988) unit root tests were

conducted. As per Table 1, all series are stationary. If trends are present, a test with trend is

applied; otherwise, a test with mean only is used.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 115 -

5000

5500

6000

6500

7000

Ja
n

/1
2

Fe
b

/1
2

M
ar

/1
2

A
p

r/
1

2

M
ay

/1
2

Ju
n

/1
2

Ju
l/

1
2

A
u

g/
1

2

Se
p

/1
2

O
ct

/1
2

N
o

v/
1

2

D
e

c/
1

2

Ja
n

/1
3

Fe
b

/1
3

M
ar

/1
3

A
p

r/
1

3

M
ay

/1
3

Ju
n

/1
3

Ju
l/

1
3

A
u

g/
1

3

Se
p

/1
3

O
ct

/1
3

N
o

v/
1

3

D
e

c/
1

3

R
s/

Q
u

in
ta

l

Day

5500

6000

6500

7000

7500

Ja
n

/1
2

Fe
b

/1
2

M
ar

/1
2

A
p

r/
1

2

M
ay

/1
2

Ju
n

/1
2

Ju
l/

1
2

A
u

g/
1

2

Se
p

/1
2

O
ct

/1
2

N
o

v/
1

2

D
e

c/
1

2

Ja
n

/1
3

Fe
b

/1
3

M
ar

/1
3

A
p

r/
1

3

M
ay

/1
3

Ju
n

/1
3

Ju
l/

1
3

A
u

g/
1

3

Se
p

/1
3

O
ct

/1
3

N
o

v/
1

3

D
e

c/
1

3

R
s/

Q
u

in
ta

l

Day

6000

6500

7000

7500

8000

8500

Ja
n

/1
2

Fe
b

/1
2

M
ar

/1
2

A
p

r/
1

2

M
ay

/1
2

Ju
n

/1
2

Ju
l/

1
2

A
u

g/
1

2

Se
p

/1
2

O
ct

/1
2

N
o

v/
1

2

D
e

c/
1

2

Ja
n

/1
3

Fe
b

/1
3

M
ar

/1
3

A
p

r/
1

3

M
ay

/1
3

Ju
n

/1
3

Ju
l/

1
3

A
u

g/
1

3

Se
p

/1
3

O
ct

/1
3

N
o

v/
1

3

D
e

c/
1

3

R
s/

Q
u

in
ta

l

Day

All India Maximum Price

Bhatinda Market

Amritsar Market

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 116 -

Fig. 1: Time series plot of wholesale prices of Pigeon Pea in different markets

Structure of Autocorrelations

For a linear time series model, such as the autoregressive integrated moving average

(ARIMA(p,d,q)) process, the patterns of autocorrelations (ACF) and partial autocorrelations

(PACF) help determine the plausible model structure. This information is also crucial when

modeling nonlinear dynamics. The presence of long-lasting autocorrelations suggests that the

underlying process may be nonlinear with time-varying variances. A key property of long

memory processes is that dependence between distant observations remains significant. For the

daily wholesale price series, autocorrelations were estimated up to 100 lags (j = 1,...,100). The

4000

4500

5000

5500

6000

6500

Ja
n

/1
2

Fe
b

/1
2

M
ar

/1
2

A
p

r/
1

2

M
ay

/1
2

Ju
n

/1
2

Ju
l/

1
2

A
u

g/
1

2

Se
p

/1
2

O
ct

/1
2

N
o

v/
1

2

D
e

c/
1

2

Ja
n

/1
3

Fe
b

/1
3

M
ar

/1
3

A
p

r/
1

3

M
ay

/1
3

Ju
n

/1
3

Ju
l/

1
3

A
u

g/
1

3

Se
p

/1
3

O
ct

/1
3

N
o

v/
1

3

D
e

c/
1

3

R
s/

Q
u

in
ta

l

Day

5000

5500

6000

6500

7000

7500

Ja
n

/1
2

Fe
b

/1
2

M
ar

/1
2

A
p

r/
1

2

M
ay

/1
2

Ju
n

/1
2

Ju
l/

1
2

A
u

g/
1

2

Se
p

/1
2

O
ct

/1
2

N
o

v/
1

2

D
e

c/
1

2

Ja
n

/1
3

Fe
b

/1
3

M
ar

/1
3

A
p

r/
1

3

M
ay

/1
3

Ju
n

/1
3

Ju
l/

1
3

A
u

g/
1

3

Se
p

/1
3

O
ct

/1
3

N
o

v/
1

3

D
e

c/
1

3

R
s/

Q
u

in
ta

l

Day

All Indian Modal Price

All India Minimum Price

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 117 -

ACF plots, shown in Figure 2, indicate that these autocorrelations decay hyperbolically rather

than exponentially, and do not display any clear seasonal or periodic patterns. The magnitude

of the autocorrelations does not diminish rapidly as the lag increases, confirming the absence

of short-term cycles and highlighting the long memory nature of the data.

Fig. 2: Correlogram of time series data of wholesale prices of Pigeon Pea in different

markets

-0.5

0

0.5

1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

A
C

F

Lags

-0.5

0

0.5

1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

A
C

F

Lags

0

0.5

1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

A
C

F

Lags

0

0.5

1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

A
C

F

Lags

-0.5

0

0.5

1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

A
C

F

Lags

Bhatinda Market

Amritsar Market

All India Maximum Price

All India Minimum Price

All India Modal Price

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 118 -

Testing Stationarity

ADF Test

The ADF test tests the null hypothesis that a time series yt is I(1) against the alternative that it

is I(0), assuming that the dynamics in the data have an ARMA structure. The ADF test is based

on estimating the test regression

t

p

j
jtjtt yyy + ++=

=
−−

1
1tDβ

In this context, Dt represents a vector of deterministic components, such as constants and linear

trends. The model includes ppp lagged difference terms to capture and approximate the

autoregressive moving average (ARMA) structure of the error process. The optimal lag length

p is chosen to ensure that the residual term ut is free from serial correlation. Additionally, the

error term is assumed to be homoskedastic.

Under the null hypothesis, the series is integrated of order zero, denoted as I(0), which

corresponds to the condition π=0. The Augmented Dickey-Fuller (ADF) test statistic used to

test this null hypothesis is the conventional t-statistic applied to the coefficient π. The ADF test

was conducted on the dataset under consideration, and the results are presented in Table 1.

Phillips-Perron (PP) Unit Root Tests

The Phillips-Perron (PP) unit root test differs from the ADF test primarily in the treatment of

serial correlation and heteroskedasticity in the error terms. While the ADF test incorporates a

parametric autoregressive framework to model the ARMA structure in the error process, the

PP test allows for a more flexible approach by not requiring such parametric adjustments within

the test regression.

The test regression for the PP approach is specified as follows:

ttt uyy ++= −1tDβ

where the error term ut is assumed to be I(0) and may exhibit heteroskedasticity. The PP test

accounts for both serial correlation and heteroskedasticity in the residuals ut by applying non-

parametric corrections directly to the test statistics. Despite these corrections, under the null

hypothesis π=0, the asymptotic distribution of the PP test statistic remains identical to that of

the ADF t-statistic.

One of the key advantages of the PP test is its robustness to general forms of heteroskedasticity

in the error term. Moreover, unlike the ADF test, the PP test does not require the user to pre-

specify the lag length for the regression, making it more flexible in certain empirical

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 119 -

applications. The PP test was also applied to the current dataset, and the results are likewise

reported in Table 1.

Table 1: Stationarity testing

Market

ADF Test Statistic PP Test Statistic

Single

Mean

With

Trend

Probability
Single

Mean

With

Trend

Probability

Single

Mean

With

Trend

Single

Mean

With

Trend

Amritsar 5.46 7.08 0.0238 0.0283 -3.29 -3.76 0.0165 0.0199

Bhatinda 6.85 9.43 0.0010 0.0010 -3.70 -4.27 0.0047 0.0039

All India

Maximum 13.11 42.71 <.000

1

<.000

1

-5.12 -9.23 <.0001 <.0001

Minimum 8.32 11.55 0.0402 0.0010 -3.53 -4.81 0.0195 0.0006

Modal 15.43 27.00 <.000

1

<.000

1

-5.55 -7.35 <.0001 <.0001

The most widely used method to estimate the fractional integration parameter 𝑑 is the ARFIMA

time series approach (Robinson, 2003). Various ARFIMA model specifications were

estimated, and the best model was selected based on the minimum AIC value. The estimated

parameters and corresponding t-statistics for the selected ARFIMA models are reported in

Table 2. The results indicate evidence of long memory in five price series, with 0<𝑑<0.5.

Positive and significant 𝑑 values suggest persistence—characterized by positive

autocorrelations and low-frequency variance. When 𝑑 is significantly positive, it may imply

that the series has infinite conditional variance. The estimated 𝑑 values range from 0.052 to

0.489, with the All India Maximum Price series exhibiting the strongest long memory. These

findings confirm that autocorrelations decay hyperbolically with increasing lag length.

Table 2: Parameter estimates of ARFIMA Model

Market Parameters Estimate Probability

Amritsar
d 0.077 0.001

AR1 0.915 < 0.001

Bhatinda

d 0.052 0.040

AR1 1.6154 < 0.001

AR2 -0.623 < 0.001

MA1 0.821 < 0.001

Maximum

Price

d 0.489 < 0.001

AR1 -0.223 < 0.001

AR2 -0.128 0.0168

Minimum

Price

d 0.093 < 0.001

AR1 1.1467 < 0.001

AR2 -0.149 < 0.001

MA1 0.784 < 0.001

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 120 -

Modal

Price

d 0.477 < 0.001

AR1 -0.157 0.008

AR2 0.183 < 0.001

Validation

One-step-ahead forecasts of wholesale prices and their corresponding standard errors were

generated using the naïve approach for the period from November 1, 2013 to December 31,

2013 (covering 40 data points, excluding market holidays) based on the fitted ARFIMA model.

A notable feature of the fitted model is that all observed values fall within one standard error

of their respective forecasts.To evaluate forecast accuracy, Relative Mean Square Prediction

Error (RMSPE), Mean Absolute Prediction Error (MAPE), and Relative Mean Absolute

Prediction Error (RMAPE) were calculated using standard formulae and are presented in Table

3.

MAPE =  −
=

++

40

1

ˆ40/1
i

itit yy

RMSPE = ()  −
=

+++

40

1

2
/ˆ40/1

i
ititit yyy

RMAPE =   100/ˆ40/1
40

1

 −
=

+++
i

ititit yyy

 Table : Validation of Models

Market MAPE RMSPE RMAPE (%)

Amritsar 195.964 204.773 3.5

Bhatinda 323.303 333.535 4.8

Max Price 352.963 366.503 4.7

Min Price 168.629 194.520 3.3

Modal Price 173.679 177.470 3.1

A perusal of above table indicates that in all the price series data, RMAPE is less than 5%

indicating the accuracy of the models.

R code for application of ARFIMA model

library(forecast)

library(tseries)

data<-read.delim("clipboard")

ARFIMA model

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 121 -

ts<-as.ts(data[,2]) #convert to time series

acf(ts) # ACF plot

pacf(ts) # PACF plot

adf_test<-adf.test(ts) # stationary plot

train<-ts[c(1:(length(ts)*0.9))] #train data

test<-ts[-c(1:(length(ts)*0.9))] #test data

model<-arfima(ts, drange=c(0, 0.5), estim=c("mle","ls")) #model

Forecast<-forecast(model, h=length(test)) # future forecast

accuracy(Forecast, x=test) ## accuarcy measure

plot(Forecast) ##plot

References

Baillie, R. T., Bollerslev, T., Mikkelsen, H.O. (1996). Fractionally integrated generalized

autoregressive conditional heteroskedasticity. Journal of Econometrics, 74, 3–30.

Beran, J. (1994). Maximum likelihood estimation of the differencing parameter for invertible

short and long memory autoregressive integrated moving average models. Journal of

the Royal Statistical Society, B 57 (4) 659-672

Booth, G.G., F.R. Kaen, and P.E. Koveos. (1982). R/S Analyses of Foreign Exchange Rates

under Two International Monetary Regimes. Journal of Monetary Economics, 10, 407-

415.

Geweke, J., Porter-Hudak, S. (1983). The estimation and application of long-memory time-

series models. Journal of Time series Analysis, 4, 221–238.

Helms, B.P., F.R. Kaen, and R.E. Rosenman. (1984). Memory in Commodity Futures

Contracts. The Journal of Futures Markets, 10, 559-567.

Hurvich, C.M., Deo, R. and Brodsky, J. (1998). The mean squared error of Geweke and Porter-

Hudak’s estimator of the memory parameter of a long-memory time-series. Journal of

Time series Analysis, 19, 19-46.

Jin, H. J., and Frechette, D. (2004). Fractional integration in agricultural futures price

volatilities. American Journal of Agricultural Economics, 86, 432-443.

Paul, R. K. and Das, M. K. (2010). Statistical modelling of Inland fish production in India.

Journal of the Inland Fisheries Society of India, 42 (2), 1-7

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 122 -

Paul, R. K. and Das, M. K. (2013). Forecasting of average annual fish landing in Ganga Basin.

Fishing chimes, 33 (3), 51-54

Paul, R. K., Prajneshu and Ghosh, H. (2013a). Statistical modelling for forecasting of wheat

yield based on weather variables. Indian Journal of Agricultural Sciences, 83(2), 180-

183.

Paul, R. K., Panwar, S., Sarkar, S. K., Kumar, A. Singh, K. N., Farooqi, S. and Chaudhary, V.

K. (2013b). Modelling and Forecasting of Meat Exports from India. Agricultural

Economics Research Review, 26 (2), 249-256.

Paul, R. K. (2014). Forecasting Wholesale Price of Pigeon Pea Using Long Memory Time-

Series Models. Agricultural Economics Research Review, 27(2), 167-176.

Phillips, P.C.B. and P. Perron (1988). Testing for Unit Roots in Time Series Regression.

Biometrika, 75, 335-346.

Robinson, P.M. (1995). Log-periodogram regression of time-series with long-range

dependence. The Annals of Statistics, 23, 1048–1072.

Tanaka, K. (1999). The nonstationary fractional unit root. Econometric Theory, 15, 549- 582.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 123 -

Wavelets Time-Series Analysis
Ranjit Kumar Paul

ICAR-Indian Agricultural Statistics Research Institute

Library Avenue, Pusa, New Delhi-110012

Email: ranjitstat@gmail.com

Introduction

The Autoregressive Integrated Moving Average (ARIMA) methodology developed by Box et

al. (2007) has remained one of the most dominant parametric approaches for analyzing time-

series data over the past few decades. In this framework, various explanatory variables

influence the model “implicitly” through the use of past values of the response variable.

However, in many practical situations, especially in complex phenomena, it becomes difficult

to assume an appropriate parametric form. In such scenarios, nonparametric approaches offer

better flexibility and modeling capability. One such powerful and emerging nonparametric

approach is Wavelet Analysis (Vidakovic, 1999; Percival and Walden, 2000). Despite the

growing number of theoretical papers on wavelet methods, their actual implementation and

application to empirical data still pose significant challenges to researchers.

Wavelet analysis can be conducted in two primary ways: in the time domain and the frequency

domain. Time-domain wavelet analysis typically involves techniques like wavelet

thresholding. For instance, Sunilkumar and Prajneshu (2004) effectively applied wavelet

thresholding for modeling and forecasting monthly rainfall across meteorological subdivisions

in Eastern Uttar Pradesh, India. On the other hand, frequency-domain wavelet analysis is

suitable for identifying and analyzing trends and cycles within time-series data. Almasri et al.

(2008) proposed a new statistical test based on wavelet decomposition for detecting the

presence of a trend in time-series data. A key difficulty in trend testing arises due to the

presence of autocorrelation among residuals, which makes standard tests based on ordinary

least squares (OLS) regression unreliable. In such cases, the autocovariance structure often

exhibits slow decay, indicating long memory in the series. Wavelet analysis proves useful here

because it can better match the structure of long-memory processes.

One of the main advantages of wavelet transformation is that it changes the behavior of

autocovariance functions. While the original time-domain series may be strongly

autocorrelated, the transformed wavelet series often shows much faster hyperbolic decay in

autocovariances. This makes the transformed series almost uncorrelated in the wavelet domain,

mailto:ranjitstat@gmail.com

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 124 -

thereby improving the reliability of statistical tests and trend estimation. In fact, this property

of wavelets makes them highly useful for modeling long memory and complex temporal

dependencies. Rainfall plays a critical role in determining agricultural performance in any

country, and particularly in India where monsoon rainfall largely influences crop production

and food security. Therefore, accurate modeling and prediction of rainfall is of utmost

importance for agricultural planning, decision-making, and policy formulation. In the Indian

context, Rajeevan et al. (2004) have provided a comprehensive review of rainfall prediction

models using multiple and power regression techniques, highlighting various modifications

that have been made over time, particularly in identifying relevant predictor variables and

improving model performance.In recent years, there has been growing interest in the

application of wavelet-based models to study agricultural time-series data. Several studies have

employed wavelet methods to improve forecasting accuracy and capture hidden structures in

data. Examples include the works of Anjoy and Paul (2017), Anjoy et al. (2017), Paul et al.

(2013), Paul (2015), Paul and Birthal (2015), Sarkar et al. (2019), Paul et al. (2020), Paul et al.

(2021), Singla et al. (2021), Paul and Garai (2021), Paul and Mitra (2021), Paul and Garai

(2022), and Paul et al. (2022). These studies reflect a wide array of applications ranging from

price forecasting to climate modeling and agricultural risk analysis. The present lecture aims

to focus on the application of wavelet analysis in the frequency domain, particularly for

estimation and testing of significant trends in India’s monsoon rainfall data covering the period

from 1979 to 2006. This approach will not only help in detecting long-term trends in the

monsoon but also assist in better understanding of the rainfall dynamics that influence Indian

agriculture.

Basics of Wavelets

The term wavelet refers to a class of basic functions characterized by a unique mathematical

structure, which underpins their key properties and broad applicability in statistical analysis.

Wavelets serve as fundamental building blocks, much like the sine and cosine functions in

Fourier analysis. Similar to these trigonometric functions, a wavelet oscillates around zero, a

property that qualifies it as a "wave."

However, unlike sine and cosine waves that extend indefinitely, wavelet functions exhibit a

localized nature their oscillations diminish and converge to zero. This dampening behavior

gives rise to the term wavelet, indicating a small or finite-duration wave.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 125 -

Formally, let (.) be a real-valued function defined over the real line R. To qualify as a wavelet,

this function must satisfy two fundamental properties:

1. Admissibility condition – ensuring the existence of the inverse wavelet transform.

2. Zero mean – the function must integrate to zero over the entire real line.

These foundational properties allow wavelets to efficiently represent localized features in both

time and frequency domains, making them powerful tools for time series analysis, signal

processing, and data compression.

(i) The integral of (.) is zero:

 0)(=


−

duu

(ii) The square of (.) integrates to unity:

 1)(2 =


−

duu

Then the function (.) is called a wave.

Discrete Fourier transform

The transformation of a function into its wavelet components shares many similarities with its

transformation into Fourier components. An understanding of wavelet analysis typically begins

with a discussion of the classical Fourier transformation. The concept, introduced by the French

mathematician Jean-Baptiste Fourier, establishes that any square-integrable function defined

on the interval [−π,π] can be decomposed into a series of component functions derived from

standard trigonometric bases. Specifically, a function fff is said to belong to the square-

integrable space L2[a, b] if it satisfies the condition of finite energy over the interval, expressed

as:

 () 

b

a

2 dxxf

Fourier’s results states that any function f  L2[-π, π] can be expressed as an infinite

sum of dilated cosine and sine functions given by

()


=

++=
1

0)sin()cos(
2

1
)(

j

jj jxbjxaaxf (1)

where

−=



dxjxxfa j .cos)(

1
 j = 0, 1, 2,…

 −=



dxjxxfb j .sin)(

1
 j = 1, 2,…

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 126 -

The series expansion is regarded as a transform, taking a function f into a set of

coefficients aj and bj. The Fourier series expansion is extremely useful in that any L2 function

can be written in terms of very simple building block functions: sines and cosines, because the

set of functions {sin(j.), cos(j.), j=1,2,…}, together with the constant function, form a basis for

the function space L2[-π, π] which is orthonormal. A sequence of functions {fj} are orthonormal

if the fj’s are pairwise orthogonal and if ║fj║=1, for all j.

Wavelet analysis versus Fourier analysis

Wavelet analysis and Fourier analysis share a fundamental similarity in that both techniques

aim to express a function as a linear combination of basis functions. In Fourier analysis, these

basis functions are complex exponentials of the form {eiwx=coswx+isinwx}, while in wavelet

analysis, the basis functions are wavelets denoted as {ψj,k}. A key distinction between the two

lies in their indexing: Fourier basis functions are indexed by a single frequency parameter ω,

whereas wavelet basis functions are indexed by two parameters—scale (j) and position (k).

This means that wavelets provide a much richer and more flexible set of basis functions

compared to the relatively limited set in Fourier analysis. The essential difference lies in how

the two analyses handle frequency and time (or location). In classical Fourier analysis, the sine

and cosine functions offer precision in the frequency domain, but they lack localization in time.

That is, while they identify which frequencies are present in a signal, they cannot determine

when these frequencies occur. Wavelets, on the other hand, offer dual localization. Through

translation (shifting in time) and dilation (scaling in frequency), wavelet basis functions can

capture both the frequency content and its location in time. This makes wavelet analysis

particularly powerful for studying signals that exhibit time-varying behavior. One of the

standout features of wavelet transforms is their locality. The wavelet coefficients are dependent

only on the behavior of the function in the vicinity of each time point. As a result, if the function

contains abrupt changes, discontinuities, or spikes—known as singularities—these features

will only affect the wavelet transform locally, around the singularity. This is in stark contrast

to Fourier transforms, which are global in nature: a single discontinuity in the signal can

influence the Fourier coefficients across the entire domain. Therefore, when analyzing data that

exhibit local irregularities or non-stationary patterns, wavelet analysis provides a more

appropriate and effective tool.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 127 -

Time domain versus Frequency domain

The most widely used method to represent signals and waveforms is in the time domain.

However, many analytical techniques work primarily in the frequency domain.

Understanding how a signal appears in the frequency domain can be somewhat challenging.

In essence, the frequency domain is just an alternative representation of a signal.

To illustrate, imagine a simple sine wave as an example.

This sine wave is usually plotted on a time-amplitude graph, which defines the time plane.

Now, if we introduce another axis to represent frequency, the sine wave can be visualized in

three dimensions.

In time-frequency analysis, the frequency-amplitude plane serves a role analogous to that of

the time-amplitude plane in representing a signal. The frequency plane is orthogonal to the time

plane, and both intersect along the common amplitude axis. When the frequency spectrum of

a signal is displayed, it is essentially a representation of this frequency plane.A time-domain

signal can be seen as the projection of a sinusoidal wave onto the time-amplitude plane.

Meanwhile, the sinusoid itself exists at a specific distance along the frequency axis,

corresponding to its frequency, which is the inverse of its period. The projection of this

waveform onto the frequency plane appears as a vertical line at the given frequency, rising to

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 128 -

a height equal to the sinusoid’s amplitude. Hence, the sinusoid simultaneously exhibits a

waveform in the time domain and a spike in the frequency domain.

Discrete Wavelet Transform (DWT)

Wavelet transforms have evolved through two major approaches: the Continuous Wavelet

Transform (CWT) and the Discrete Wavelet Transform (DWT). The CWT is suited for

analyzing continuous signals defined over the real number line, while the DWT is designed for

discrete signals—those indexed over integers, such as digital time-series data.

The DWT decomposes a time-series into components associated with both low and high

frequency bands, enabling a multi-resolution representation of the data. This allows for

effective modeling and analysis, especially in the presence of time-varying patterns, by using

the inverse DWT to reconstruct the original signal from its components.

Several features make DWT a powerful tool for time-series analysis:

Time-Scale Localization:

DWT re-expresses a time-series through coefficients associated with specific dyadic scales2j-1

and corresponding time positions. These coefficients preserve all information in the original

series, allowing for perfect reconstruction.

Energy Decomposition:

DWT partitions the signal energy across different scales and times, much like analysis of

variance (ANOVA) in statistics. This makes it useful for identifying how energy (or variability)

is distributed across frequencies and over time.

Decorrelation Capability:

DWT effectively decorrelates many types of real-world time-series, especially those common

in physics, engineering, and finance. This property makes it valuable in statistical modeling,

where uncorrelated components simplify analysis.

Computational Efficiency:

The DWT can be computed efficiently using a recursive method known as the Pyramid

Algorithm, which is even faster than the widely known Fast Fourier Transform (FFT).

In summary, the DWT serves as a versatile and computationally efficient method for analyzing

time-series, capturing both short-term fluctuations and long-term trends by localizing features

in both time and frequency domains.

 The first stage for computing the DWT simply consists of transforming the time-series X

of length N = 2J into the N/2 first level wavelet coefficients W1 and the N/2 first level scaling

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 129 -

coefficients V1. Precisely, to obtain unit scale wavelet coefficients, time-series

 1,...,0: −= NtX t is circularly filtered with filter hl, l = 1, 2, …, L-1, where L is the width

of the filter and must be an even integer. For hl to have width L, it must satisfy the conditions:

h0 ≠ 0 and hL-1 ≠ 0. Now define hl = 0 for l < 0 and l ≥ L so that hl is actually an infinite sequence

wit at most L nonzero values. A wavelet filter must satisfy the following three basic properties:

 
−

=

=
1

0

L

l

l 0h , 
−

=

=
1

0

2
L

l

l 1h and 0hhhh
l

nll

L

l

nll == 


−=

+

−

=

+ 2

1

0

2 ,

for all nonzero integers n. Compute

 
−

=

−=
1

0

mod)(,1

2/1 ~
2

L

l

Nltlt XhW , t = 0,1,…,N-1. (2)

Now define N/2 wavelet transforms for unit scale corresponding to t=0,…,N/2−1 as

 
−

=

−++ ==
1

0

mod)12(12,1

2/1

,1

~
2

L

l

Nltltt XhWW , (3)

This procedure is called “Downsampling” procedure. To obtain first stage scaling

coefficients, define scaling filter () lL

l

l hg −−

+
−= 1

1
1 .

Then the first level scaling coefficients are

 
−

=

−++ ==
1

0

mod)12(12,1

2/1

,1

~
2

L

l

Nltltt XgVV (4)

The second stage of Pyramid algorithm consists of treating  tV ,1 in the same way as  tX

was treated in the first stage. Then we circularly filter  tV ,1 separately with  lh and  lg

and subsample to produce two new series, namely


−

=

−+=
1

0

2mod)12(,1,2

L

l

Nltt VW (5)


−

=

−+=
1

0

2mod)12(,1,2

L

l

Nltt VV , t=0,1,…,N/4−1. (6)

Above procedure is repeated J times to obtain 2J DWT’s. There are J-2 subsequent

stages to the Pyramid algorithm. For j = 3,…, J, the jth stage transforms Vj-1 of length N/2j-1

into Wj and Vj each of length N/2j. At the jth stage, the elements of Vj-1 are filtered separately

with wavelet filter lh , and scaling filter lg . The filter outputs are subsampled to form

respectively Wj and Vj. The elements of Vj are called the scaling coefficients for level j, while

those of Wj contain the desired wavelet coefficients for level j. At the end of Jth stage, the DWT

coefficient W is formed by concatenating the J + 1 vectors.

Let P be an N  N real valued matrix defining the DWT and satisfying the

orthonormality property P`P = IN, where IN is the NN identity matrix. Then the DWT (W) of

the time-series vector X may be computed by W = P X. Now the elements of the vector W are

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 130 -

decomposed into J+1 subvectors. The first J subvectors contains all of the DWT coefficients

for scale j . Then W can be written as

  = JJ21 VWWWW ...

Multiresolution Analysis (MRA)

Consider the wavelet synthesis of X

 JJ

J

1j

jj VQWPWPX +== 
=

, (7)

where Pj and QJ matrices are defined by partitioning the rows of P commensurate with the

partitioning of W into W1, …, WJ and VJ. Thus the NN 2/ matrix P1 is formed from the n

= 0 up to n = N/2-1 rows pf P; the NN 4/ matrix P2 is formed from the n = N/2 up to n =

3N/4-1 rows; and so forth, until we come to the N1 matrices PJ and QJ, which are the last

two rows of P.

Thus

  = JJ2 QPPP ...1P

Now define Dj = P`j Wj for j = 1,…, J, which is an N dimensional column vector whose

elements are associated with changes in X at scale j ; i.e., Wj = PjX represents the portion of

the analysis W = PX attributable to scale j , while P`j Wj is the portion of the synthesis X =

P`W attributable to scale j . Let SJ = Q`JVJ which has all its elements equal to the sample

mean X . Then it can be seen that

 J

J

j

jD SX +=
=1

, (8)

which defines a multiresolution analysis (MRA) of X; i.e., the time-series X is expressed as the

sum of a constant vector SJ and J other vectors Dj, j = 1,…, J each of which contains a time-

series related to variations in X at a certain scale. Dj is called the jth level wavelet detail.

Estimation of Trend by Wavelets

Sometimes it is important to decompose a time-series into different components of variations

like, low frequencies (trend), and high-frequency (noise) components. And the multiresolution

analysis is used for decomposing and describing the low frequencies and high-frequency

components in the data in a scale by scale basis. Consider the following model for a time-series

data {Xt }:

Xt = μ + Tt + Zt, t = 0, . . . , N – 1, (9)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 131 -

where μ is a constant term, Tt is an unknown deterministic polynomial trend function of order

r, Zt is a residual term which is a long-memory process defined by ()B−1 Zt = t , where, 

is the long memory parameter, { t } is a Gaussian white noise process with mean zero and 2



> 0. Here, B, is the back shift operator such that BZt = Zt-1.

Now, since  = JJ21 VWWWW ... , the vector W can be written as sum of two

vectors: W = Ww + Ws, where Ww is an N × 1 vector containing the wavelet coefficients and

zeros at all other locations, and Ws is an N × 1 vector containing the scaling coefficients and

zeros at all other locations. Since X = P`W, therefore,

X = P`W = P` Ws + P` Ww = ZT ˆˆ + , (10)

where T̂ is an estimator of the polynomial trend T at level J , while Ẑ is the estimate of

residual Z. The issue of choosing the level of the estimate depends on the goal of application.

J should be chosen small for detecting the local trends and cycles. In other applications, J is set

to be large, if the aim is to detect the global trend.

The orthonormality of the matrix P implies that the DWT is an energy preserving

transform so that


=

==
N

t

tX
1

222
WX (11)

Given the structure of the wavelet coefficients, the energy in X is decomposed, on a scale by

scale basis, via

2

1

222

J

J

j

j VWWX +== 
=

 (12)

so that
2

jW represents the contribution to the energy of {Xt} due to changes at scale j .

whereas
2

JV represents the contribution due to variations at scale J . So the estimated

variance of the time-series in terms of wavelet and scaling coefficients can be expressed as:

() 22

1

2
22

2

1

2 1111
X

NN
X

N
XX

N
J

J

j

j

N

t

tX −+=−=−= 
==

VWW

2

1

2 ˆ)(ˆ
JS

J

j

jXv  +=
=

 (13)

where)(ˆ2

jXv  is the estimated variance of the wavelet coefficients at scale j , and 2ˆ
JS is the

estimated variance of the trend.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 132 -

For testing the null hypothesis H0: Trend = 0, Almasri et al. (2008) proposed a test

statistic that can discriminate between this null hypothesis and the alternative hypothesis H1:

Trend ≠ 0 is defined as follows:


=

=
J

j

jX

S

v

G J

1

2

2

)(ˆ

ˆ




 (14)

The test statistic (N - N/2J)/(N/2J - 1)G will follow an F distributed with (N/2J - 1) and (N - N/2J

) degrees of freedom, under the assumption of normally distributed scaling coefficients.

However, when errors deviate from normality or exhibit dependency, the true distribution of

this test statistic becomes unknown. In such cases, it is essential to compute empirical critical

values through simulation experiments to better understand the distributional behavior of the

statistic under non-standard conditions. Wavelet-based estimation has a distinct advantage over

the Fourier transform because of its localization in both time and frequency domains. This

characteristic allows the wavelet estimates to vary with time 𝑡 which is particularly useful for

analyzing long memory processes. Such processes often manifest as localized trends and

cycles, which may eventually disappear, making them difficult to capture with global methods

like Fourier analysis. Wavelets, however, can isolate these transient features effectively across

different scales 𝐽 providing richer insights into the structure of variability. An important aspect

of wavelet analysis is the selection of an appropriate wavelet filter. The choice depends on the

structural characteristics of the data under investigation. For instance, the Haar wavelet, a

piecewise constant function, is well-suited for detecting structural breaks or sharp

discontinuities in a series. This is because it preserves such features without smoothing them

out. On the other hand, smoother wavelets like those with length 𝐿 >2 (e.g., Daubechies

wavelets) provide better continuity but may blur discontinuities, making them less effective for

change-point detection. In general, wavelets with wider support (large 𝐿) offer smoother

approximations but lower spatial localization, whereas wavelets with narrow support (small 𝐿)

are highly localized but less smooth.

Basis Functions

Just as any two-dimensional vector (x,y) can be decomposed into a linear combination of the

basis vectors (1,0) and (0,1), functions can also be expressed as linear combinations of basis

functions. In Fourier analysis, these basis functions are sines and cosines, which satisfy the

property of orthogonality—their inner product over a given interval sums to zero when

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 133 -

different. By selecting appropriate combinations of these trigonometric functions, one can

represent a wide class of functions. Wavelet analysis follows a similar principle using wavelet

families to construct orthonormal bases. A wide variety of wavelet families have been

developed, each suited to different types of data and analysis goals. Two of the most widely

used wavelet systems are the Haar wavelet and the Daubechies wavelet. These enable the

generation of orthonormal wavelet bases tailored to specific function spaces, allowing for

flexible and efficient representation and analysis of complex signals.

The Haar System

 The simplest wavelet basis for L2(R) is the Haar basis. The Haar function is a bonafide wavelet,

though not used much in practice, uses a mother wavelet given by

 1, 0 ≤ x < ½,

 ψ(x) = -1, ½ ≤ x ≤1,

 0, otherwise

The Haar wavelet is piecewise constant over intervals of length one-half and can be expressed

by a picture as follows (Fig.1).

`haar' mother, psi(0,0)

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Fig. 1. The Haar function

Haar wavelets are characterized by their compact support, meaning they vanish outside

a finite interval, which allows for good time localization. However, when analyzing functions

that require higher levels of regularity or smoothness, the Haar system becomes unsuitable.

This is primarily because Haar wavelets lack continuous differentiability and exhibit poor

decay of coefficients at infinity, making them less effective for representing smooth functions.

These limitations reduce their applicability in many data analysis contexts. To address these

drawbacks, Daubechies (1992) introduced a family of smooth wavelet bases by replacing the

Haar scaling function with one exhibiting greater regularity. The resulting Daubechies wavelets

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 134 -

offer significantly improved behavior for analyzing smooth or more complex functions,

thereby broadening their utility in practical applications.

Daubechies Wavelet Bases

By imposing an appealing set of regularity conditions, Daubechies (1992) came up with a

useful class of wavelet filters, all of which yield a DWT in accordance with the notion of

differences of adjacent averages. The definition for this class of filters can be expressed in

terms of the squared gain function for the associated Daubechies scaling filters gl, l = 0, …, L-

1:

() () () ()fffG l
L

l

lL

l

LD  2
12/

0

12/ sincos2 
−

=

+− ,

where L is a positive even integer.

Using the relationship () ()2/1+= fGfH DD , the corresponding Daubechies wavelet filters

have squared gain functions satisfying

 () () () ()fffH l
L

l

lL

l

LD  2
12/

0

12/ cossin2 
−

=

+−

().DH can be considered as the squared gain function of the equivalent filter for a filter cascade.

Apart from the above, there are other families of smooth wavelet bases that provide compactly

supported orthonormal wavelets and are continuously differentiable, like those proposed by

Stromberg, Meyer and Battle (Ogden, 1997).

An Illustration (Ghosh et al (2010), and Paul et al (2011))

To estimate the trend using wavelet methodology, Indian monsoon rainfall data from 1879 to

2006 is used.Monsoon rainfall is calculated as the total daily rainfall from June 1st to

September 30th each year.The data set is collected from the official website of the Indian

Institute of Tropical Meteorology, Pune (www.tropmet.res.in).

This rainfall data shows cyclical fluctuations along with a possible declining trend.

The trend in monsoon rainfall has been estimated using both the ARIMA method and twavelet

approach. Various types of wavelets have been applied to analyze the data on a scale-by-scale

basis. This helps to highlight the localized variations present in the dataset.

Modelling of rainfall data in the framework of autoregressive process

Assuming presence of deterministic linear trend in the rainfall series, following model is fitted:

 tt tY  ++= , t = 1, 2, …, T (18)

 where t ’s are uncorrelated with zero mean and constant variance 2

 . Let

http://www.tropmet.res.in/

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 135 -

 tYe tt  ˆˆˆ −−=

The fitted trend equation is obtained as:

 Yt = 863.718 – 0.234 t

 (14.226) (0.191)

where the values within brackets () denote corresponding standard errors of estimates. The

trend is not significant at 5% level of significance. The graph of trend is displayed in Fig. 3.

Fig. 3. Trend in Indian monsoon rainfall data

 Trend analysis through wavelet approach

The discrete wavelet transform (DWT) and multiresolution analysis (MRA) were performed

using both the Haar wavelet and the Daubechies 4 (D4) wavelet. The resulting DWT

coefficients are illustrated in Figures 5 and 6. These coefficients represent differences of

various orders of weighted averages of segments of the time series 𝑋𝑡 localized in time. The

wavelet coefficients are displayed as upward or downward bars, whose magnitudes correspond

to the strength of the localized features. At level 1 (the lowest resolution), the number of

coefficients is half the original number of data points, and this number continues to halve at

each subsequent level (Nason and Sachs, 1999).

The upper levels of the plot contain high-frequency components, while the lower levels

represent low-frequency (smooth) components. Since wavelet coefficients vary over time, they

effectively capture time-localized changes in the series. Abrupt structural changes or

discontinuities can be detected by observing vertical clusters of large coefficients across

resolution levels. These coefficients allow the original time series to be perfectly reconstructed

using the inverse discrete wavelet transform (IDWT). These patterns are further corroborated

by the multiresolution analysis (MRA) of the time series, as shown in Figures 7 and 8.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 136 -

0 20 40 60 80 100 120

s6

d6

d5

d4

d3

d2

d1

idw t

 Fig. 5. DWT by D4 wavelet at level 6

0 20 40 60 80 100 120

s6

d6

d5

d4

d3

d2

d1

idw t

Fig. 6. DWT by Haar wavelet at level 6

The estimate of trend of the rainfall data computed by Haar and D4 wavelets for the levels

6 are given below (Figure 9-10). As the level increases the declining global trend present in the

data set is depicted clearly.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 137 -

Fig. 7. MRA by D4 wavelet at level 6

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 138 -

Fig. 8. MRA by Haar wavelet at level 6

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 139 -

Fig. 9. Estimate of trend by Haar wavelet at level 6

Fig. 10. Estimate of trend by Daubechies (D4) wavelet at level 6

The discrete wavelet transform (DWT) and multiresolution analysis (MRA) of India’s

monsoon rainfall time-series data reveal differential behaviours at different time epochs at

different scales. Two wavelets namely; Daubechies (D4) and Haar wavelets are used for

estimation of trend in the rainfall data. It is found that the monsoon rainfall in India is showing

a declining trend over the years, which can have very serious repercussions from “Global

Warming” point of view. This important feature, however, could not be captured by ARIMA

methodology.

Recently, the algorithm of wavelet based models including stochastic models and machine

learning techniques have been proposed and relevant R packages have been developed for the

ease of application in real data. Few of the R packages are:

https://CRAN.R-project.org/package=WaveLetLongMemory

https://CRAN.R-project.org/package=WaveletArima

https://CRAN.R-project.org/package=WaveletANN

https://CRAN.R-project.org/package=WaveletGARCH

https://CRAN.R-project.org/package=WaveletSVR

https://CRAN.R-project.org/package=WaveletRF

R code for application of ARIMA model

library(WaveletArima)

train<-ts[c(1:(length(ts)*0.9))] #train data

test<-ts[-c(1:(length(ts)*0.9))] #test data

###Wavelet ARIMA

https://cran.r-project.org/package=WaveLetLongMemory
https://cran.r-project.org/package=WaveletArima
https://cran.r-project.org/package=WaveletANN
https://cran.r-project.org/package=WaveletGARCH
https://cran.r-project.org/package=WaveletSVR
https://cran.r-project.org/package=WaveletRF

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 140 -

WaveletARIMA<-WaveletFittingarma(ts=train, filter

='la8',Waveletlevels=floor(log(length(train))),

MaxARParam=5,MaxMAParam=5,NForecast=length(test))

Fitted<-WaveletARIMA$FinalPrediction

Forecast<-WaveletARIMA$Finalforecast

Accuracy

MAPE_train<-MLmetrics::MAPE(Fitted, train)

MAPE_test<-MLmetrics::MAPE(Forecast, test)

RMSE_train<-MLmetrics::RMSE(Fitted, train)

RMSE_test<-MLmetrics::RMSE(Forecast, test)

Wavelet ANN

library(WaveletANN)

WaveletANN<-

WaveletFittingann(ts=train,Waveletlevels=floor(log(length(train))),Filter='d4',

 nonseaslag=5,hidden=3,NForecast=length(test))

Fitted<-WaveletANN$FinalPrediction

Forecast<-WaveletANN$Finalforecast

Accuracy

MAPE_train<-MLmetrics::MAPE(Fitted[-c(1:5)], train[-c(1:5)])

MAPE_test<-MLmetrics::MAPE(Forecast, test)

RMSE_train<-MLmetrics::RMSE(Fitted[-c(1:5)], train[-c(1:5)])

RMSE_test<-MLmetrics::RMSE(Forecast, test)

References:

Almasri, A., Locking, H. and Shukur, G. (2008). Testing for climate warming in Sweden during

1850–1999, using wavelets analysis. J. Appl. Stat., 35, 431-43.

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (2007). Time-Series Analysis: Forecasting

and Control. 3rd edition. Pearson education, India.

 Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM, Philadelphia.

Ghosh, H., Paul, R. K. and Prajneshu, (2010). Wavelet Frequency Domain Approach for

Statistical Modeling of Rainfall Time-Series Data. Journal of Statistical Theory and

Practice, 4 (4)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 141 -

Kulkarni, J. R. (2000). Wavelet analysis of the association between the southern oscillation

and Indian summer monsoon. Int. J. Climatol., 20, 89-104.

 Nason, G. P. and von Sachs, R. (1999). Wavelet analysis in time series analysis. Philosophical

Transactions of Royal Society of London, A 357, 2511-2526

 Ogden, T. (1997). Essential Wavelets for Statistical Applications and Data Analysis.

Birkhauser, Boston

Paul, R. K., Prajneshu, and Ghosh, H. (2011). Wavelet methodology for estimation of trend in

Indian monsoon rainfall time-series data. Indian Journal of Agricultural Science, 81

(3), 96-98.

Paul, R. K., Prajneshu, and Ghosh, H. (2013). Wavelet Frequency Domain Approach for

Modelling and Forecasting of Indian Monsoon Rainfall Time-Series Data. Journal of

the Indian Society of Agricultural Statistics, 67 (3), 319-327

Paul, R. K. (2015). ARIMAX-GARCH-WAVELET Model for forecasting volatile data. Model

Assisted Statistics and Application, 10(3), 243-252

Paul, R.K. and Birthal, P.S. (2015). Investigating rainfall trend over India using wavelet

technique. Journal of Water and Climate Change, 7(2), 365-378

Anjoy, P. and Paul, R.K. (2017). Wavelet based hybrid approach for forecasting volatile potato

price. Journal of the Indian Society of Agricultural Statistics, 71(1), 7–14

Anjoy, P., Paul, R. K., Sinha, K., Paul, A. K. and Ray, M. (2017) A hybrid wavelet based neural

networks model for predicting monthly WPI of pulses in India. Indian Journal of

Agricultural Sciences, 87 (6): 834–839

Rathod, S., Singh, K.N., Paul, R.K., Meher, S.K., Mishra, G.C., Gurung, B., Ray, M. and Sinha,

K. (2017). An Improved ARFIMA Model using Maximum Overlap Discrete Wavelet

Transform (MODWT) and ANN for Forecasting Agricultural Commodity Price.

Journal of the Indian Society of Agricultural Statistics, 71(2), 103–111

Anjoy, P. and Paul, R.K. (2019). Comparative performance of wavelet-based neural network

approaches. Neural Computing and Applications, 31:3443-3453

Paul, R.K., Sarkar, S., Mitra, D., Panwar, S., Paul, A.K. and Bhar, L.M. (2020) Wavelets based

estimation of trend in sub-divisional rainfall in India. Mausam, 71 (1), 551-560

Paul, R.K., Paul, A.K. and Bhar, L. M. (2020). Wavelet-based combination approach for

modeling sub-divisional rainfall in India. Theoretical and Applied Climatology, 139,

(3–4), 949–963

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 142 -

Paul, RK, Sarkar, S and Yadav, SK. (2021). Wavelet based long memory model for modelling

wheat price in India. Indian Journal of Agricultural Sciences, 91(2): 227–31

Singla, S., Paul, RK, and Shekhar, S. (2021). Modelling price volatility in onion using wavelet

based hybrid models. Indian Journal of Economics and Development, 17(02): 256:265

Paul, R.K. and Garai, S. (2021). Performance comparison of wavelets-based machine learning

technique for forecasting agricultural commodity prices, Soft Computing, 25(20),

12857-12873

Paul, R.K. and Mitra, D. (2021). Forecasting Wheat Yield using Wavelet-Based

Multiresolution Analysis. Journal of the Indian Society of Agricultural Statistics 75(3):

181–186

Paul, R.K. and Garai, S. (2022). Wavelets Based Artificial Neural Network Technique for

Forecasting Agricultural Prices. Journal of the Indian Society for Probability and

Statistics 23: 47–61

Paul, R.K., Vennila, S., Yeasin, M., Yadav, S.K., Nisar, S., Paul, A.K., Gupta, A., Malathi, S.,

Jyosthna, M.K., Kavitha, Z., Mathukumalli, S.R., and Prabhakar, M. (2022). Wavelet

Decomposition and Machine Learning Technique for Predicting Occurrence of Spiders

in Pigeon Pea. Agronomy, 12, 1429

 Sarkar, S., Paul, R.K., Paul, A.K. and Bhar, L.M. (2019). Wavelet based Multi-scale Auto-

Regressive (MAR) Model: An Application for Prediction of Coconut Price in Kerala.

Journal of The Indian Society of Agricultural Statistics 73 (1), 1-10

 Percival, D. B. and Walden, A. T. (2000). Wavelet methods for time series analysis. Cambridge

Univ. Press, U.K.

 Rajeevan, M., Pai, D. S., Dikshit, S. K. and Kelkar, R. R. (2004): IMD’s new operational

models for long – range forecast of southwest monsoon rainfall over India and their

verification for 2003. Curr. Sci., 86, 422 - 31.

 Sunilkumar, G. and Prajneshu (2004). Modelling and forecasting meteorological subdivisions

rainfall data using wavelet thresholding approach. Cal. Stat. Assn. Bull., 54, 255-68.

 Vidakovic, B. (1999). Statistical Modeling by Wavelets. John Wiley, New York

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 143 -

Introduction to Machine Learning
D. Arun Kumar1, Santosha Rathod2, Nobin Chandra Paul2, Ponnaganti Navyasree2, K.

Ravi Kumar2 and Prabhat Kumar2

1KSRM College of Engineering, Kadapa, A.P.
2ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

Email: arunkumar.mtech09@gmail.com

Artificial Intelligence (AI) is the field of science that creates machines or devices that can

mimic intelligent behaviors of human being. The term AI is frequently applied to the project of

developing systems endowed with the intellectual processes characteristic of humans, such as the

ability to reason, discover meaning, generalize, or learn from past experience. On the other hand,

machine learning is a type of Artificial Intelligence that provides computers with the ability to learn

without being explicitly programmed. More formally, Machine learning (ML) is defined as a field

of the computer sciences that gives computers the ability to learn without being explicitly

programmed (Samuel, 1959). Arthur Samuel (1959) was a computer pioneer who wrote first self-

learning program, which played checkers-learned from “experience”. Machine learning (ML) is a

subset of artificial intelligence (AI) that uses statistical methods to enable machines to improve with

experience. This involves combining programming with probability and statistics. Machine

learning is broadly classified into categories such as classification and regression. In classification,

inputs are divided into two or more classes. Pattern recognition and data mining are integral parts

of machine learning techniques. The regression aspect of ML is used to map data to a real-valued

prediction variable. Time series modeling falls into the category of ML regression problems.

 The MuCulloch and Pitts Model was proposed by Warren MuCulloch (neuroscientist) and Walter

Pitts (logician) known as linear threshold gate, the MuCulloch and Pitts Model is called as first

formal model of machine learning techniques (McCulloch and Pitts, 1943).

 It is divided into 2 parts. The first part, g takes an input performs an aggregation and based on the

aggregated value the second part, f makes a decision.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 144 -

Suppose that If someone wants to predict their own decision, whether to watch a random cricket

match on TV or NOT. The inputs are all Boolean i.e., {0,1} and my output variable is also Boolean

{0: Will watch it, 1: Won’t watch it}, the following possibilities are prevailed;

So, the inputs could be;

x_1 could be is IPL On (I like IPL more)

x_2 could be is It a Practice Match (I care less about Practice Match)

x_3 could be is MI Playing (I am a big fan of MI and so on.) …………… and so on…

g(x) is just doing a sum of the inputs — a simple aggregation. And theta here is called threshold

parameter, for example, if I always watch the game when the sum turns out to be 2 or more, the

theta is 2 here. This is called Threshold logic.

 𝑔(𝑥1, 𝑥2, 𝑥3,…… . 𝑥𝑛) = 𝑔(𝑥) = ∑ 𝑥𝑖𝑛
𝑖=1

𝑦 = 𝑓(𝑔(𝑥)) = 1 𝑖𝑓 𝑔(𝑥) ≥ 0 = 0 𝑖𝑓 𝑔(𝑥) < 0

Frank Rosenblatt (1958) introduced a network composed of the units that were enhanced version

of McCulloch-Pitts Threshold Logic Unit (TLU) model by adding an extra input that represents

bias and termed it as perceptron model.

𝑠𝑢𝑚 =∑𝑋𝑖 𝑊𝑖

𝑛

𝑖=1

+ 𝑏

After, McCulloch-Pitts Threshold Logic Unit (TLU) model the neural network concepts become

researchable

issue and evolved as most promising and robust AI/ML techniques utilized in almost all areas.

On the other hand, the time series refers to an important statistical technique for studying the trends

and characteristics of collecting data points indexed in chronological order. An ordered sequence of

values of a variable at equally spaced time intervals are called as time series (TS) and analysis of

such data are termed as time series analysis (TSA). The main aim of time series modeling is to

carefully collect and rigorously study the past observations of a time series to develop an appropriate

model which describes the inherent structure of the series.

Once a model is constructed, it can be employed to generate future values of the series, i.e., for

forecasting. Time series forecasting refers to the process of predicting future observations based on

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 145 -

past patterns. Owing to its critical importance across diverse practical domains—such as business,

finance, economics, science, and engineering—forecasting of time series data has become a major

area of research. One of the defining features of time series is the dependence between successive

observations, and this dependence forms the basis for building predictive models.

ARIMA Model

Over time, numerous efforts have been made to enhance forecasting accuracy by developing more

robust models. The effectiveness of such models often depends on the length of historical data used

in the analysis. According to Box and Jenkins, a minimum of 50 observations is typically required to

achieve reliable results in time series modeling. Among classical time series models, the

Autoregressive Integrated Moving Average (ARIMA) model is one of the most extensively applied.

Its popularity stems from its linear structure, statistical tractability, and the systematic model

identification procedure offered by the well-known Box-Jenkins methodology (Box and Jenkins,

1970). For a comprehensive overview of exponential smoothing methods, readers may refer to

Makridakis et al. (1998), while Pankratz (1983) provides a wide array of case studies illustrating

ARIMA modeling. A detailed treatment of ARIMA and its related concepts is presented in Box et

al. (1994). Since many real-world time series are non-stationary, differencing is often introduced to

achieve stationarity. The integration of the differencing component into the ARMA model leads to

the ARIMA(p,d,q) formulation, where d represents the order of differencing. A time series Yt is said

to follow an integrated ARMA process if ∆𝑌𝑡 = (1 − 𝐵)𝑑𝜀𝑡. The ARIMA model is expressed as

follows;

 ∅(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡 (1)

Where, 𝜀𝑡~𝑊𝑁 (0, 𝜎
2) and WN is the white noise. The Box-Jenkins ARIMA model building

consists of three steps viz., identification, estimation and diagnostic checking.

Artificial Neural Network (ANN) for Time series

The Artificial Neural Network (ANN) architecture specifically designed for time series analysis is

referred to as the Time Delay Neural Network (TDNN). Time series phenomena can be

mathematically modeled using neural networks that incorporate an implicit functional representation

of time. In contrast to static neural networks such as the multilayer perceptron (MLP), which are

inherently non-dynamic, TDNN introduces dynamic properties by including temporal dependencies

(Haykin, 1999). One of the simplest and most effective strategies to adapt neural networks for time

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 146 -

series forecasting involves the incorporation of time delays, also known as time lags, into the input

layer of the network. These lagged inputs allow the model to capture temporal patterns and

autocorrelations present in the data. The TDNN represents a class of such feed-forward neural

architectures capable of handling time-dependent data structures. The general mathematical

formulation for the final output 𝑌𝑡 of a multi-layer feed-forward TDNN is expressed as follows:

𝑌𝑡 = 𝛼0 + ∑ 𝛼𝑗
𝑞
𝑗=1 𝑔(𝛽0𝑗 +∑ 𝛽𝑖𝑗𝑌𝑡−𝑝

𝑝
𝑖=1) + 𝜀𝑡 (2)

where, 𝛼𝑗(𝑗 = 0,1,2, … , 𝑞) and 𝛽𝑖𝑗(𝑖 = 0,1,2, … , 𝑝, 𝑗 = 0,1,2, . . . , 𝑞) are the model parameters, also

called as the connection weights, p is the number of input nodes,q is the number of hidden nodes and

𝑔 is the activation function. The architecture of neural network is represented in figure 1.

Figure1: Artificial Neural Network Structure

Support Vector Machine (SVM) for Time Series

Support Vector Machine (SVM) is a supervised machine learning technique, originally developed

for solving linear classification problems. Later, in 1997, Vapnik extended the concept to handle

regression problems by introducing the ε-insensitive loss function (Vapnik, 1997). This extension

led to the development of Support Vector Regression (SVR), and when applied to nonlinear

regression estimation problems, it is referred to as the Nonlinear Support Vector Regression

(NLSVR) model.

The core idea behind NLSVR is to transform the original input time series data into a high-

dimensional feature space, where a regression model is constructed. This transformation enables

the model to capture nonlinear relationships that may not be apparent in the original input space.

Let us consider a dataset represented 𝑍 = {𝑥𝑖 𝑦𝑖}𝑖=1
𝑁 where 𝑥𝑖 ∈ 𝑅

𝑛is the input vector, yi is the

corresponding scalar output, and NNN is the size of the dataset. The general form of the Nonlinear

Support Vector Regression estimation function is given as follows:

𝑓(𝑥) = 𝑊𝑇𝜙 (𝑥) + 𝑏 (3)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 147 -

where 𝜙(.): 𝑅𝑛→ 𝑅𝑛ℎ is a nonlinear mapping function which map the original input space into a

higher dimensional feature space vector. W∈𝑅𝑛ℎ is weight vector, 𝑏 is bias term and superscript T

denotes the transpose.

Brock-Dechert-Scheinkman (BDS) test for testing nonlinearity

BDS (Brock et al. 1996), test utilizes the concept of spatial correlation from chaos

theory. The computational procedure is given as follows

i) Let the considered time series is

  1 2 3[, , ,...,]i Nx x x x x= (4)

The next step is to specify a value of m (embedding dimension), embed the time series

into m dimensional vectors, by taking each m successive points in the series. This transforms

the series of scalars into a series of vectors with overlapping entries

1 1 2

2 2 3 1

1

(, ,...,)

(, ,...,)

.

.

.

(, ,...,)

m

m

m

m

m

N m N m N m N

x x x x

x x x x

x x x x

+

− − − +

=

=

=

 (5)

ii) In the third step correlation integral is computed, which measures the spatial correlation

among the points, by adding the number of pairs of points (i, j), where 1≤ i ≤ N and 1≤

j≤N , in the m-dimensional space which are “close” in the sense that the points are

within a radius or tolerance  of each other.

, , ;

1

(1)
m i j

i jm m

C I
N N

 


=
−
 (6)

 Where Ii,j;= 1 if m m

i jx x − 

 = 0 otherwise

iii) If the time series is i.i.d. then C ,m [C ,1]
m

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 148 -

iv) The BDS test statistics is as follows

, ,1

,

,

[()]m

m

m

m

N C C
BDS

V

 





−
= (7)

Where,

1
2 2 2 2 2 2

,

1

4[2 (1)]
m

m m j j m m

m

j

V K K C m C m KC   

−
− −

=

= + + − −

, , ;

6

(1)(2)
i j N

i j Nm m m

K K h
N N N

 
 

= =
− −



, ; , ; , ; , ; , ; , ;

, , ;

[]

3

i j j N i N N j j i i N

i j N

I I I I I I
h

     



+ +
=

The choice of m and  depends on number of data. The null hypothesis is data are

independently and identically distributed (i.i.d.) against the alternative hypothesis the data are

not i.i.d. this implies that the time series is non-linearly dependent. BDS test is a two-tailed

test; the null hypothesis should be rejected if the BDS test statistic is greater than or less than

the critical values.

K-Nearest Neighbors (KNN)

The K-Nearest Neighbors (KNN) algorithm is one of the simplest, yet highly effective,

supervised machine learning methods used for both classification and regression tasks. It is a

non-parametric and instance-based learning algorithm, meaning it makes no explicit

assumptions about the underlying data distribution and relies directly on the training data to

make predictions.

The basic idea behind KNN is intuitive:

To predict the class (or value) for a new data point, the algorithm searches for the k training

samples closest to it in the feature space, where “closest” is usually defined using distance

metrics like Euclidean distance, Manhattan distance, or Minkowski distance.

For classification, the algorithm assigns the class label that is most common among these k

neighbors — this is called majority voting.

For regression, the algorithm typically predicts the output as the average (or sometimes the

weighted average) of the output values of the k nearest neighbors.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 149 -

Advantages of KNN:

• Simple to understand and easy to implement.

• Naturally handles multi-class problems.

• Works well with non-linear data structures and does not require a training phase.

Limitations of KNN:

• Computationally expensive for large datasets, as distance must be calculated for all

training points at prediction time.

• Sensitive to irrelevant features and the choice of distance metric.

• Performance depends strongly on the choice of k (number of neighbors) and feature

scaling.

In time regression applications, KNN can be adapted to forecast future values by comparing

the current pattern to historical patterns and averaging the outcomes of the closest matches.

This approach is often called KNN time series forecasting.

==

K-Nearest Neighbors (KNN) in R

Classification & Regression Example

==

Install & Load Packages

install.packages("class") # For KNN classification

install.packages("FNN") # For KNN regression

library(class)

library(FNN)

Use the built-in iris dataset

data(iris)

Split data into training & testing sets

set.seed(123) # For reproducibility

index <- sample(1:nrow(iris), size = 0.7 * nrow(iris))

train_data <- iris[index,]

test_data <- iris[-index,]

KNN Classification

Prepare predictors & labels

train_X_class <- train_data[, 1:4]

train_Y_class <- train_data$Species

test_X_class <- test_data[, 1:4]

test_Y_class <- test_data$Species

Normalize features

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 150 -

train_X_class <- scale(train_X_class)

test_X_class <- scale(test_X_class, center = attr(train_X_class, "scaled:center"), scale =

attr(train_X_class, "scaled:scale"))

Apply KNN classification (k = 5)

k_value <- 5

pred_Y_class <- knn(train = train_X_class, test = test_X_class, cl = train_Y_class, k =

k_value)

Confusion Matrix & Accuracy

conf_matrix <- table(Predicted = pred_Y_class, Actual = test_Y_class)

print(conf_matrix)

accuracy <- mean(pred_Y_class == test_Y_class)

print(paste("Classification Accuracy:", round(accuracy * 100, 2), "%"))

KNN Regression

Example: Predict Sepal.Length from other features

train_X_reg <- train_data[, 2:4]

train_Y_reg <- train_data$Sepal.Length

test_X_reg <- test_data[, 2:4]

test_Y_reg <- test_data$Sepal.Length

Normalize features

train_X_reg <- scale(train_X_reg)

test_X_reg <- scale(test_X_reg, center = attr(train_X_reg, "scaled:center"), scale =

attr(train_X_reg, "scaled:scale"))

Apply KNN regression (k = 5)

knn_reg <- knn.reg(train = train_X_reg, test = test_X_reg, y = train_Y_reg, k = k_value)

Predicted values & RMSE

pred_Y_reg <- knn_reg$pred

rmse <- sqrt(mean((pred_Y_reg - test_Y_reg)^2))

print(paste("Regression RMSE:", round(rmse, 3)))

R code to implement ML TS models

nrow(available.packages())

rm(list=ls())

library(forecast)

library(e1071)

library(tseries)

library(ggplot2)

library(tidyverse)

library(fNonlinear)

library(lmtest)

g=read.table(file="rf.txt",header=T)

head(g)

dim(g)

Box.test(g$Rainfall)

rf1=read.table(file="rf1.txt",header=T)

head(rf1)

ggplot(data = rf1, aes(x = Month, y = Rainfall))+ geom_line(color = "#00AFBB", size = 1) +

 labs(x = "Months", y = "Rainfall") + ggtitle("TS Plot of Monthly Rainfall Data")

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 151 -

bdsTest(g$Rainfall, m = 3, eps = NULL, title = NULL, description = NULL)

dim(g)

a1=g$Rainfall[1:1416]

a2=g$Rainfall[1417:1428]

Box.test(a1)

acf(a1)

pacf(a1)

############# ARIMA Fitting #########

m1=auto.arima(a1)

coeftest(m1)

accuracy(m1)

Box.test(m1$residuals)

fitted1=m1$fitted

write.csv(as.data.frame(fitted1), file="ARIMA_Fitted.csv")

f1=forecast(m1, h=12)

f11=data.frame(f1)

f12=f11$Point.Forecast

mse11=abs(a2-f12)^2

mse1=mean(mse11)

rmse1=sqrt(mse1)

rmse1

write.csv(as.data.frame(f12), file="ARIMA_Forecasted.csv")

################### ANN ##########

m2=nnetar(a1,6, P=1, 10, repeats=25, xreg=NULL, lambda=NULL, model=NULL,

subset=NULL, scale.inputs=TRUE, maxit=150)

m2

accuracy(m2)

fitted2=m2$fitted

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv")

Box.test(m2$residuals)

f2=forecast(m2, h=12)

f21=data.frame(f2)

f22=f21$Point.Forecast

mse21=abs(a2-f22)^2

mse2=mean(mse21)

rmse2=sqrt(mse2)

rmse2

write.csv(as.data.frame(f22), file="ANN_Forecasted.csv")

m3=nnetar(a1)

accuracy(m3)

m3

fitted3=m3$fitted

f3=forecast(m3, h=12)

f31=data.frame(f3)

f32=f31$Point.Forecast

mse31=abs(a2-f32)^2

mse3=mean(mse31)

rmse3=sqrt(mse3)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 152 -

rmse3

Box.test(m3$residuals)

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv")

write.csv(as.data.frame(f32), file="ANN_Forecasted.csv")

################### SVR ##########

X1=g$Rainfall[1:1416]

Y1=g$Rainfall[2:1417]

X2=g$Rainfall[1416:1427]

Y2=g$Rainfall[1417:1428]

m4=svm(X1,Y1,degree = 3,cost = 45.69, nu=0.5,tolerance = 0.00001,epsilon = 0.00001)

summary(m4)

fitted4 <- fitted(m4) ## Fitted values

mse41=abs(Y1-fitted4)^2

mse4=mean(mse41)

rmse4=sqrt(mse4)

rmse4

Box.test(m4$residuals)

s3=predict(model,X2)

mse61=abs(Y2-s3)^2

mse6=mean(mse61)

rmse6=sqrt(mse6)

rmse6

############# ARIMA ###########

##########Significance Comparison ##########

########## For testing set ######

dm.test(m1$residuals, m2$residuals)

dm.test(m1$residuals, m3$residuals)

dm.test(m1$residuals, m4$residuals)

######## You have to do it for testing set also #####

########### Hybrid Modeling ##########

r1=m1$residuals

bdsTest(r1, m = 3, eps = NULL, title = NULL, description = NULL)

n1=nnetar(r1)

n1f=n1$fitted

c1=(m1$fitted)+n1f

c11=c1[32:1416]

a11=a1[32:1416]

mse51=abs(a11-c11)^2

mse5=mean(mse51)

rmse5=sqrt(mse5)

rmse5

############# Comparison###########

accuracy(m1)

accuracy(m2)

rmse4

rmse5

################### Fitted Plots ##########

rm(list=ls())

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 153 -

library(tidyverse)

library(readxl)

library(ggplot2)

Data1<-as.data.frame(read_excel("Fitted_Plot.xlsx", col_names = TRUE,sheet = "data"))

head(Data1)

Date <- seq(as.Date("2020/1/06"), as.Date("2020/06/30"), "day")

head(Data1)

RF=Data1$RF

Actual=Data1$Actual

Model1=Data1$Model1

Model2=Data1$Model2

Model3=Data1$Model3

Data2=data.frame(Date, RF, Actual, Model1, Model2, Model3)

df <- Data2 %>%

 select(Date, Actual, Model1, Model2, Model3) %>%

 gather(key = "Models", value = "RF", -Date)

tail(df)

p1<-ggplot(df, aes(x = Date, y = RF)) +

 geom_line(aes(color = Models), size = 1) + scale_x_date(date_labels = "%d/%b-%Y")+

labs(x = "Date", y = "RF")+ ggtitle("Actual v/s Fitted plot RF")+

 theme(plot.title = element_text(size = 11))

p1+geom_vline(xintercept = as.Date("2020-06-24"), color="blue4")

Apart from Support Vector Regression (SVR), Artificial Neural Networks (ANN), and K-

Nearest Neighbors (KNN), there are several other widely used machine learning algorithms

that are covered in separate chapters of this manual. These include Decision Trees, Random

Forests, Gradient Boosting Machines, Naive Bayes Classifiers, Principal Component Analysis

(PCA), and various Ensemble Learning methods. Each of these techniques provides unique

approaches to classification, regression, and forecasting problems in agricultural and allied

sciences. For deeper understanding, readers are encouraged to consult additional references

such as The Elements of Statistical Learning by Hastie, Tibshirani, and Friedman (2009);

Pattern Recognition and Machine Learning by Bishop (2006); An Introduction to Statistical

Learning by James et al. (2013); and relevant R documentation and vignettes available online.

References

Box, G. E. P., & Jenkins, G. (1970). Time series analysis, Forecasting and control. Holden-

Day.

Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (1994). Time series analysis: Forecasting and

control (3rd ed.). Prentice Hall.

Brock, W. A., Dechert, W. D., Scheinkman, J. A., & LeBaron, B. (1996). A test for

independence based on the correlation dimension. Econometric Reviews, 15, 197-

235.

Chitikela, G., Admala, M., Ramalingareddy, V. K., Bandumula, N., Ondrasek, G., Sundaram,

R. M., & Rathod, S. (2021). Artificial-Intelligence-Based Time-Series Intervention

Models to Assess the Impact of the COVID-19 Pandemic on Tomato Supply and

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 154 -

Prices in Hyderabad, India. Agronomy, 11, 1878.

https://doi.org/10.3390/agronomy11091878

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation (2nd ed.). Prentice Hall.

Jha, G. K., & Sinha, K. (2012). Time-delay neural networks for time series prediction: An

application to the monthly wholesale

price of oilseeds in India. Neural Computing and Applications, 24(3), 563-571.

Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998). Forecasting: Methods and

applications (3rd ed.). John Wiley & Sons.

Naveena, K., Rathod, S., Shukla, G., & Yogish, K. J. (2014). Forecasting of coconut

production in India: A suitable time series model. International Journal of

Agricultural Engineering, 7(1), 190-193.

Naveena, K., Singh, S., Rathod, S., & Singh, A. (2017). Hybrid ARIMA-ANN modelling for

forecasting the price of Robusta coffee in India. International Journal of Current

Microbiology and Applied Sciences, 6(7), 1721-1726.

Naveena, K., Singh, S., Rathod, S., & Singh, A. (2017). Hybrid Time Series Modelling for

Forecasting the Price of Washed Coffee (Arabica Plantation Coffee) in India.

International Journal of Agriculture Sciences, 9(10), 4004-4007.

Pankratz, A. (1983). Forecasting with univariate Box-Jenkins models: Concepts and cases.

John Wiley & Sons.

Rathod, S., & Mishra, G. C. (2018). Statistical Models for Forecasting Mango and Banana

Yield of Karnataka, India. Journal of Agricultural Science and Technology, 20(4),

July 2018.

Rathod, S., Saha, A., Patil, R., Ondrasek, G., Gireesh, C., Anantha, M. S., Rao, D. V. K. N.,

Bandumula, N., Senguttuvel, P., Swarnaraj, A. K., Meera, S. N., Waris, A.,

Jeyakumar, P., Parmar, B., Muthuraman, P., & Sundaram, R. M. (2021). Two-Stage

Spatiotemporal Time Series Modelling Approach for Rice Yield Prediction &

Advanced Agroecosystem Management. Agronomy, 11, 2502.

https://doi.org/10.3390/agronomy11122502

Saha, A., Singh, K. N., Ray, M., & Rathod, S. (2020). A hybrid spatio-temporal modelling:

An application to space-time rainfall forecasting. Theoretical and Applied

Climatology, 142, 1271-1282.

Vapnik, V., Golowich, S., & Smola, A. (1997). Support vector method for function

approximation, regression estimation, and signal processing. In M. Mozer, M.

Jordan, & T. Petsche (Eds.), Advances in Neural Information Processing Systems, 9,

281-287. MIT Press.

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network

model. Neurocomputing, 50, 159-175.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data

mining, inference, and prediction (2nd ed.). Springer.

Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical

learning: With applications in R. Springer.

https://doi.org/10.3390/agronomy11122502

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 155 -

Artificial Neural Network

Santosha Rathod, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi Kumar, and

Prabhat Kumar

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

santosha.rathod@icar.org.in

Introduction

The artificial intelligence (AI) is the field of science that creates machines or devices that can

mimic intelligent behaviors of human being. The term AI is frequently applied to the project

of developing systems endowed with the intellectual processes characteristic of humans, such

as the ability to reason, discover meaning, generalize, or learn from past experience. On other

hand, machine learning is a type of Artificial Intelligence that provides computers with the

ability to learn without being explicitly programmed. More formally, Machine learning (ML)

is defined as a field of the computer sciences that gives computers the ability to learn without

being explicitly programmed (Samuel, 1959). Arthur Samuel (1959) was a computer pioneer

who wrote first self-learning program, which played checkers-learned from “experience”. ML

is a subset of AI technique which use statistical methods to enable machines to improve with

experience. This mean that combine: Programing+Probability and Statistics. Machine learning

is broadly classified into two or more classes, namely, classification and regression; in

classification the inputs are divided into two or more classes. The pattern recognition and data

mining are part of the machine learning techniques. The Regression part of ML used to map a

data to a real valued prediction variable. The time series modeling falls into the category of

ML regression problem.

The MuCulloch and Pitts Model was proposed by Warren MuCulloch (neuroscientist) and

Walter Pitts (logician) in 1943 known as linear threshold gate, the MuCulloch and Pitts Model

is called as first formal model of machine learning techniques.

mailto:santosha.rathod@icar.org.in

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 156 -

It is divided into 2 parts. The first part, g takes an input performs an aggregation and based on

the aggregated value the second part, f makes a decision.

Suppose that If someone wants to predict their own decision, whether to watch a random cricket

match on TV or NOT. The inputs are all Boolean i.e., {0,1} and my output variable is also

Boolean {0: Will watch it, 1: Won’t watch it}, the following possibilities are prevailed;

So, the inputs could be;

x_1 could be is IPL On (I like IPL more)

x_2 could be is It a Practice Match (I care less about Practice Match)

x_3 could be is MI Playing (I am a big fan of MI and so on.) …………… and so on…

g(x) is just doing a sum of the inputs — a simple aggregation. And theta here is called threshold

parameter, for example, if I always watch the game when the sum turns out to be 2 or more,

the theta is 2 here. This is called Threshold logic.

 𝑔(𝑥1, 𝑥2, 𝑥3,…… . 𝑥𝑛) = 𝑔(𝑥) = ∑ 𝑥𝑖𝑛
𝑖=1

𝑦 = 𝑓(𝑔(𝑥)) = 1 𝑖𝑓 𝑔(𝑥) ≥ 0

 = 0 𝑖𝑓 𝑔(𝑥) < 0

In late 1950s, Frank Rosenblatt introduced a network composed of the units that were enhanced

version of McCulloch-Pitts Threshold Logic Unit (TLU) model by adding an extra input that

represents bias and termed it as perceptron model.

𝒔𝒖𝒎 =∑𝑿𝒊 𝑾𝒊

𝒏

𝒊=𝟏

+ 𝒃

After, McCulloch-Pitts Threshold Logic Unit (TLU) model the neural network concepts

become researchable issue and evolved as most promising and robust AI/ML techniques

utilized in almost all areas.

On other hand, the time series refers to an important statistical technique for studying the trends

and characteristics of collecting data points indexed in chronological order. An ordered

sequence of values of a variable at equally spaced time intervals are called as time series (TS)

and analysis of such data are termed as time series analysis (TSA). The main aim of time series

modeling is to carefully collect and rigorously study the past observations of a time series to

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 157 -

develop an appropriate model which describes the inherent structure of the series. This model

is then used to generate future values for the series, i.e. to make forecasts. Time series

forecasting thus can be termed as the act of predicting the future by understanding the past.

Due to the indispensable importance of time series forecasting in numerous practical fields

such as business, economics, finance, science and engineering, etc. Important properties of

time series data are the successive observations under considerations are dependent. Much

efforts have been made by researchers over many years to develop the efficient forecasting

models to improve the prediction accuracy of the models involving time series data. The

accuracy of forecasting models is depending on number of observations used in time series

analysis, it is generally believed that at least 50 observations are necessary to perform TSA as

stated by Box and Jenkins who were pioneers in time series modeling.

One of the most important and widely used classical time series model is the Autoregressive

Integrated Moving Average (ARIMA) model. The popularity of the ARIMA model is due to

its linear statistical properties as well as the popular Box-Jenkins methodology (Box and

Jenkins 1970) for model building procedure. A good account on exponential smoothing

methods is given in Makridakis et al. (1998). A practical treatment on ARIMA modeling along

with several case studies can be found in Pankratz (1983). A reference book on ARIMA and

related topics are rigorously explained in Box et al. (1994).

Artificial Neural Network for Time series:

Artificial Neural Networks (ANNs) applied to time series analysis are often referred to

as Time Delay Neural Networks (TDNNs). Time series data can be effectively modeled using

neural networks that incorporate an implicit representation of time. Unlike static neural

networks, such as the multilayer perceptron, time delay networks introduce dynamic behavior

into the model (Haykin, 1999). A straightforward method for constructing a neural network for

time series forecasting is by incorporating time delays, or time lags, into the input layer. These

lags serve as temporal inputs, enabling the network to capture dependencies over time. The

Time Delay Neural Network is one such architecture designed for this purpose. The following

is the general formulation for the final output Yt of a multi-layer feedforward time delay neural

network.

 𝑌𝑡 = 𝛼0 + ∑ 𝛼𝑗
𝑞
𝑗=1 𝑔(𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑌𝑡−𝑝

𝑝
𝑖=1) + 𝜀𝑡

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 158 -

where, 𝛼𝑗(𝑗 = 0,1,2, … , 𝑞) and 𝛽𝑖𝑗(𝑖 = 0,1,2, … , 𝑝, 𝑗 = 0,1,2, . . . , 𝑞) are the model

parameters, also called as the connection weights, p is the number of input nodes,q is the

number of hidden nodes and 𝑔 is the activation function. The architecture of neural network is

represented in figure 1.

Fig.1: Artificial Neural Network Structure

The Back Propagation Algorithm:

The Multilayer Perceptron (MLP) is trained using supervised learning algorithms, with

backpropagation being the most widely used method. This algorithm adjusts the network’s

weights and thresholds based on the training data to minimize prediction error. The weight of

the 𝑊𝑖𝑗 . These connection weights can be conveniently organized into a weight matrix W,

where each element corresponds to a specific connection. This matrix effectively represents

the network’s connectivity pattern, which defines its overall architecture. In the output layer,

each unit determines its activation by following a two-step process. The first step involves

computing the total weighted input 𝑋𝑗 using the following formula:

 𝑋𝑗 = ∑𝑦𝑖𝑊𝑖𝑗

Where 𝑦𝑖is the activity level of the jth unit in the previous layer and 𝑊𝑖𝑗is the weight

of the connection between the ith and the jth unit. Next, the unit calculates the activity 𝑦𝑗using

some function of the total weighted input. Generally, we use the sigmoid function:

 𝑦𝑖 = [1 + 𝑒−𝑥𝑗]−1

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 159 -

Once the activities of all outputs units have been determined, the network computes

the error E, which is defined by the expression:

 𝐸 =
1

2
∑ (𝑦𝑖 − 𝑑𝑗)

2
𝑗

where 𝑦𝑖 is the activity level of the jth unit in the top layer and 𝑑𝑗 is the desired output

of the jth unit.

The back propagation algorithm consists of four steps:

i. Calculate how fast the error changes as the activity of an output unit is changed. This

error derivative (EA) is the difference between the actual and the desired activity.

 𝐸𝐴𝑗 =
𝜕𝐸

𝜕𝑦𝑖
= 𝑦𝑖 − 𝑑𝑗

ii. Compute how fast the error changes as the total input received by an output unit is

changed. This quantity (EI) is the answer from step (i) multiplied by the rate at which

the output of a unit changes as its total input is changed.

 𝐸𝑗
𝐼 =

𝜕𝐸

𝜕𝑥𝑖
=

𝜕𝐸

𝜕𝑦𝑖
×

𝜕𝐸

𝜕𝑥𝑖
= 𝐸𝐴𝑗𝑦𝑖(1 − 𝑦𝑗)

iii. Compute how fast the error changes as a weight on the connection into output unit is

changed. This quantity (EW) is the answer from, step (ii) multiplied by the activity

level of the unit from which the connection emanates.

 𝐸𝑊𝑖𝑗 =
𝜕𝐸

𝜕𝑊𝑖𝑗
=

𝜕𝐸

𝜕𝑋𝑖
×

𝜕𝑋𝑖

𝜕𝑊𝑖𝑗
= 𝐸𝑗

𝐼𝑦𝑖

iv. Compute how fast the error changes as the activity of a unit in the previous layer is

changed. This crucial step allows back propagation to be applied to multilayer

networks. When the activity of a unit in the previous layer changes, it affects the

activities of all the output units to which it’s connected. So to computer the overall

effect on the error, we add together all these separate effects on outputs units. But each

effect is simple to calculate. It is the answer in step (iii) multiplied by the weight on the

connection to that output unit.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 160 -

 𝐸𝐴𝑗 =
𝜕𝐸

𝜕𝑦𝑖
∑

𝜕𝐸

𝜕𝑥𝑖
 ×

𝜕𝑥𝑖

𝜕𝑦𝑖
= ∑ 𝐸𝑗

𝐼
𝑗𝑗 𝑊𝑖𝑗

By using steps (ii) and (iv), we can convert the EAs of one layer of units into EAs for

the previous layer. This procedure can be repeated to get the EAs for as many previous layers

as desired. Once we know the EA of a unit, we can use steps (ii) and (iii) to compute the EWs

on its incoming connections.

Activation functions

The activation function is also known as the transfer function. It determines the

relationship between input and outputs of a node and a network. The activation function is

responsible for introducing amount of nonlinearity that is valuable for most ANN applications.

Roughly speaking, any differentiable function can be an activation function. Following are the

commonly used activation functions;

i. The sigmoidal (logistic) function

 𝑓(𝑦) =
1

1+𝑒−𝑦

ii. The hyperbolic tangent (tanh) function

 𝑓(𝑦) =
𝑒𝑦−𝑒−𝑦

𝑒𝑦+𝑒−𝑦

iii. The sine or cosine function

 𝑓(𝑥) = sin(𝑦) or 𝑓(𝑥) = cos(𝑦)

iv. The linear function

 𝑓(𝑥) = 𝑦

It is suggested to use the suitable activation function based on nature of the data.

Training sample and test sample

For building an ANN model, Training and test sample are must require. The training

sample is used for ANN model development and test sample is adopted for evaluating the

forecasting ability of the model. Sometimes a third one called the validation sample is also

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 161 -

utilized to avoid the over fitting problem or to determine the stopping point of the training

process. It is usually preferred to use one test set for both validation and testing purposes if the

data set is small. In our view, the selection of the training and test sample may affect the

performance of ANNs. The main question is to divide the data into the training and test sets.

Although there is no definite answer to this problem, several factors such as the problem

characteristics, the data type and the size of the available data should be considered while

dividing the data set. Most of the time it is in practice that training and test sets are selected

based on the rule of 90:10, 80:20 or 70:30.

Illustration:

(Results from Rathod et al 2018)

Yearly data on yield (MT/ha) of mango was collected from data base of National Horticulture

Board (NHB) and http://www.indiastat.com. For forecasting yield of mango of Karnataka, data

from 1980 to 2014 were considered. Data from 1980-2011 were used for model building and

2012 to 2014 were used to check the forecasting performance of the models. The time series

plot of mango yield time series of Karnataka is depicted in fig.4. The ARIMA model has been

built for mango yield of Karnataka, India. The original time series was found to be non-

stationary, so first differencing was done to make the stationary series time series. The adequate

model i.e. ARIMA (011) has been identified based on Autocorrelation and Partial

Autocorrelation Function (ACF and PACF) plots. The parameters of ARIMA models are

estimated using maximum likelihood methods are given in table 1. Further the model

performance in training set and testing data set is given in tables 5 and 6.

8

8.5

9

9.5

10

10.5

11

1
9
8

0
1

9
8

1
1

9
8

2
1

9
8

3
1

9
8

4
1

9
8

5
1

9
8

6
1

9
8

7
1

9
8

8
1

9
8

9
1

9
9

0
1

9
9

1
1

9
9

2
1

9
9

3
1

9
9

4
1

9
9

5
1

9
9

6
1

9
9

7
1

9
9

8
1

9
9

9
2

0
0

0
2

0
0

1
2

0
0

2
2

0
0

3
2

0
0

4
2

0
0

5
2

0
0

6
2

0
0

7
2

0
0

8
2

0
0

9
2

0
1

0
2

0
1

1
2

0
1

2
2

0
1

3
2

0
1

4

M
an

g
o

 P
ro

d
u
ct

io
n

Year

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 162 -

Fig. 4: Time series plot of mango yield time series

Table 1: Parameter estimation of ARIMA (0 1 1) for Mango Yield time series.

Parameter Estimate
Standard

Error
t Value Approx. Pr > |t| Lag

P(Resi.) at 6 Lag

Constant 0.033 0.038 0.87 0.382 0 0.240

MA 1 0.581 0.161 3.64 0.003 1

The ANN was fitted to mango yield time series of Karnataka and the model specifications are

given in table 2 and 3. Further the model performance in training set and testing data set is

given in tables 5 and 6.

Table 2: ANN Model Specifications.

Time series Activation function Time

delay

No. of

hidden

nodes

Total No.

of

Parameter

s

hidden

Layer

output layer

Mango Yield Sigmoidal Linear 2 4 17

Table 4: Comparison of forecasting performance of all models in training data set.

Criteria ARIMA ANN

MAPE 3.83 2.89

Table 5: Comparison of forecasting performance of all models in testing data set.

Year
Actual

Forecast

ARIMA ANN

2012 10.84 11.75 9.68

2013 10.04 11.15 10.14

2014 9.93 8.67 10.37

MAPE 10.71 5.37

The ANN model outperformed the ARIMA model in terms of MAPE in both training and

testing data sets.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 163 -

Conclusion:

The main finding of this study is the artificial neural network has performed better than

autoregressive moving average model in both training and testing sets. However, this results

cannot be treated as generalized as there are no universal approximations are existing in terms

of model performance. But for nonlinear time series data machine learning techniques are

feasible alternatives which performs better than linear time series models. These models can

be further employed in varying autoregressive orders in different real life data sets so that

practical validity of the model can be well established.

R codes:

nrow(available.packages())

rm(list=ls())

library(forecast)

library(e1071)

library(tseries)

library(ggplot2)

library(tidyverse)

library(fNonlinear)

library(lmtest)

g=read.table(file="rf.txt",header=T)

head(g)

dim(g)

Box.test(g$Rainfall)

rf1=read.table(file="rf1.txt",header=T)

head(rf1)

ggplot(data = rf1, aes(x = Month, y = Rainfall))+ geom_line(color = "#00AFBB", size = 1) +

 labs(x = "Months", y = "Rainfall") + ggtitle("TS Plot of Monthly Rainfall Data")

bdsTest(g$Rainfall, m = 3, eps = NULL, title = NULL, description = NULL)

dim(g)

a1=g$Rainfall[1:1416]

a2=g$Rainfall[1417:1428]

Box.test(a1)

acf(a1)

pacf(a1)

############# ARIMA Fitting #########

m1=auto.arima(a1)

coeftest(m1)

accuracy(m1)

Box.test(m1$residuals)

fitted1=m1$fitted

write.csv(as.data.frame(fitted1), file="ARIMA_Fitted.csv")

f1=forecast(m1, h=12)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 164 -

f11=data.frame(f1)

f12=f11$Point.Forecast

mse11=abs(a2-f12)^2

mse1=mean(mse11)

rmse1=sqrt(mse1)

rmse1

write.csv(as.data.frame(f12), file="ARIMA_Forecasted.csv")

################### ANN ##########

m2=nnetar(a1,6, P=1, 10, repeats=25, xreg=NULL, lambda=NULL, model=NULL,

subset=NULL, scale.inputs=TRUE, maxit=150)

m2

accuracy(m2)

fitted2=m2$fitted

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv")

Box.test(m2$residuals)

f2=forecast(m2, h=12)

f21=data.frame(f2)

f22=f21$Point.Forecast

mse21=abs(a2-f22)^2

mse2=mean(mse21)

rmse2=sqrt(mse2)

rmse2

write.csv(as.data.frame(f22), file="ANN_Forecasted.csv")

m3=nnetar(a1)

accuracy(m3)

m3

fitted3=m3$fitted

f3=forecast(m3, h=12)

f31=data.frame(f3)

f32=f31$Point.Forecast

mse31=abs(a2-f32)^2

mse3=mean(mse31)

rmse3=sqrt(mse3)

rmse3

Box.test(m3$residuals)

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv")

write.csv(as.data.frame(f32), file="ANN_Forecasted.csv")

Suggested Readings

Box, G.E.P. and Jenkins, G. (1970). Time series analysis, Forecasting and control, Holden-

Day, San Francisco, CA.

Brock, W.A., Dechert, W.D., Scheinkman, J.A, and lebaron, B. (1996). A test for independence

based on the correlation dimension, Econometric reviews, 15:197-235.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 165 -

Chitikela, G.; Admala, M.; Ramalingareddy, V.K.; Bandumula, N.; Ondrasek, G.; Sundaram,

R.M.; Rathod, S. Artificial-Intelligence-Based Time-Series Intervention Models to

Assess the Impact of the COVID-19 Pandemic on Tomato Supply and Prices in

Hyderabad, India. Agronomy 2021, 11, 1878.

Jha, G. K. and Sinha, K. (2012) Time-delay neural networks for time series prediction: an

application to the monthly wholesale price of oilseeds in India, Neural Computing and

Applications, 24(3), 563-571

Rathod, S. and Mishra, G.C. (2018). Statistical Models for Forecasting Mango and Banana

Yield of Karnataka, India. Journal of Agricultural Science and Technology. 20(4) July

2018.

Rathod, S.; Saha, A.; Patil, R.; Ondrasek, G.; Gireesh, C.; Anantha, M.S.; Rao, D.V.K.N.;

Bandumula, N.; Senguttuvel, P.; Swarnaraj, A.K.; Meera, S.N.; Waris, A.; Jeyakumar,

P.; Parmar, B.; Muthuraman, P.; Sundaram, R.M. Two-Stage Spatiotemporal Time

Series Modelling Approach for Rice Yield Prediction & Advanced Agroecosystem

Management. Agronomy 2021, 11, 2502. https://doi.org/10.3390/agronomy11122502

Vapnik, V., Golowich, S., and Smola, A. (1997). Support vector method for function

approximation, regression estimation, and signal processing, In Mozer, M., Jordan, M

and Petsche, T. (Eds) Advances in Neural Information Processing Systems, 9:281-287,

Cambridge, MA, MIT Press.

Zhang, G.P. (2003). Time series forecasting using a hybrid ARIMA and neural network model.

Neurocomputing, 50, 159-175.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 166 -

Support Vector Machine

Santosha Rathod, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi Kumar

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

Email: santosha.rathod@icar.gov.in

Introduction

Support vector machine (SVM) was originally developed for classification problems

by Cortes and Vapnik (1995) for binary classification. A classification task usually involves

separating data into training and testing sets. Each instance in the training set contains one

“target value” (i.e. the class labels) and several “attributes” (i.e. the features or observed

variables). The goal of SVM is to produce a model (based on the training data) which predicts

the target values of the test data given only the test data attributes.

Support vector machine (SVM) is supervised machine learning technique, which was

originally developed for linear classification problems. Later in the year 1997, the support

vector machine for regression problems were developed by Vapnik by introducing ε-insensitive

loss function and it has been extended to the nonlinear regression estimation problems and

modeling of such problems is called as Nonlinear Support Vector Regression (NLSVR) model.

The basic principle involved in NLSVR is to transform the original input time series into a high

dimensional feature space and then build the regression model in a new feature space. The

support vector regression, particularly the nonlinear support vector regression has been widely

used in time series prediction in many areas viz., agriculture, industry, stock market price

prediction etc., (Hong et al. 2006, Cong et al. 2016, Kumar and Prajneshu, 2015).

Support Vector Regression:

Consider a vector of data set 𝑍 = {𝑥𝑖 𝑦𝑖}𝑖=1
𝑁 where 𝑥𝑖 ∈ 𝑅

𝑛 which contains both vector

of input and 𝑥𝑖 ∈ 𝑅 is the scalar output and N is the size of data set. The general expression of

NLSVR estimation function is expressed as follows

 𝑓(𝑥) = 𝑊𝑇𝜙 (𝑥) + 𝑏 (1)

where 𝜙(.): 𝑅𝑛→ 𝑅𝑛ℎ is a nonlinear mapping function from original input space into a higher

dimensional feature space, which can be infinite dimensional, 𝑤∈𝑅𝑛ℎ is weight vector, 𝑏 is

bias term and superscript T denotes the transpose. The coefficients W and 𝑏 are estimated from

data by minimizing the following regularized risk function:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 167 -

 𝑅(𝜃) =
1

2
‖𝑤‖2 + 𝐶 [

1

𝑁
∑ 𝐿𝜀
𝑁
𝑖=1 (𝑦𝑖, 𝑓(𝑥𝑖))] (2)

The equation (2) contains two components, one is regularized term i.e.
1

2
‖𝑤‖2 and another

term is
1

𝑁
∑ 𝐿𝜀
𝑁
𝑖=1 (𝑦𝑖, 𝑓(𝑥𝑖)) called as empirical error term, which is estimated by using

Vapnik 𝜀-insensitive loss function which is function given by

 𝐿𝜀(𝑦𝑖 , 𝑓(𝑥𝑖)) = 𝑓(𝑥) = {
|𝑦𝑖 , 𝑓(𝑥𝑖) − 𝜀|; |𝑦𝑖 − 𝑓(𝑥𝑖)| ≥ 𝜀,

0 |𝑦𝑖 − 𝑓(𝑥𝑖)| < 𝜀,
 (3)

where 𝑦𝑖 is actual value and 𝑓(𝑥𝑖) is estimated value. In Equation (14), 𝐶 is denoted as

regularized constant which determines the trade-off between empirical error and regularized

parameter. Both 𝐶 and 𝜀 are user-determined hyper-parameters. The final form of Nonlinear

SVR function is:

 𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏,

𝑁
𝑖=1 𝑖 = 1,2, … ,𝑁 (4)

where 𝛼𝑖 and 𝛼𝑖
∗ are called Lagrange multipliers.

Selection of optimal hyper-parameters is a key step in NLSVR modelling. The

performance of NLSVR model is strongly depends on the kernel function (Table 1) and set of

hyper-parameters. The value 𝜀 is called as tube size equivalent to approximation accuracy in

training data (Fig.1). Both 𝐶 and 𝜀 are user determined hyper-parameters. The training points

within the 𝜀-tube have no loss and do not provide any information for decision. Only those data

points located on or outside the 𝜀-tube are penalized and will serve as the support vectors. This

property of sparseness algorithm results only from the 𝜀-insensitive loss function and greatly

simplifies computation of Nonlinear SVR. Two positive slack variables 𝜉𝑖 and 𝜉 𝑖
∗ (in interval)

are introduced for representing the distance from actual values to corresponding boundary

values of the 𝜀-tube. These equal zeros when data points fall within the tube. These slack

variables are used for determining the number of support vectors.

The most commonly used kernel function is radial basis function (RBF) which is given

as follows.

 𝑘(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝{−𝛾‖𝑥 − 𝑥𝑖‖
2) (5)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 168 -

Fig.1: A schematic representation of Vapnik𝜀-insensitive loss function and accuracy

tube under Nonlinear SVR model setup

The RBF kernel function in NLSVR requires optimization of two hyper-parameters, i.e. the

regularization parameter C, which balances the complexity and approximation accuracy of the

model and the kernel bandwidth parameter 𝛾, which defines the variance of RBF kernel

function (Vapnik 2000).

Table 1: Commonly used Kernel functions in Support Vector Machine problems

Kernel type Expression

Linear SVM 𝐾(𝑥, 𝑥𝑖) = 𝑥𝑖
𝑇𝑥

Polynomial of degree d 𝐾(𝑥, 𝑥𝑖) = (𝑥𝑖
𝑇𝑥 + 𝑘)𝑑

Radial Basis Function (RBF) 𝐾(𝑥, 𝑥𝑖) = exp {−
‖𝑥−𝑥𝑖‖

2

2𝜎2
} Equivalently

𝐾(𝑥, 𝑥𝑖) = exp{−𝛾‖𝑥 − 𝑥𝑖‖
2}

Multi-Layer Perceptron (MLP) 𝐾(𝑥, 𝑥𝑖) = tanh (𝑘1𝑥𝑖
𝑇𝑥 + 𝑘2

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 169 -

The support vector machine train the data set based on certain learning rules. Actually,

the challenges in learning from data have led to a revolution. In the statistical learning

framework, learning means estimating a function

 𝑦 = 𝑓(𝑥) (7)

Where𝑥𝜖𝑅𝑛and 𝑦 ∈ {−1,+1}. The estimate must be constructed given only N

examples of the mapping performed by the unknown function (𝑥1𝑦1, 𝑥2𝑦2, … , 𝑥𝑁 , 𝑦𝑁)(called

the training set). The ultimate goal of learning rule is to minimize the error function or risk

function

 𝑅(𝜃) = ∫ 𝐿(𝑦, 𝑓(𝑥; 𝜃))𝑑𝐹(𝑥, 𝑦) (8)

where∫ 𝐿(𝑦, 𝑓(𝑥)) is the loss function, a measure of difference between the estimate

𝑓(𝑥) and the actual value 𝑦 given by the unknown function at a point x. By defining our goal

as minimizing the risk function, we state that our objective is to minimize the expected average

loss for a given problem. For this definition to be of value, we need to define learning problems

with associated loss functions. In minimizing the risk function, we have to choose the function

that provides minimum deviation (in the sense of our loss function) from the true function

across the whole function space (for every point𝑥). In reality, however, the joint distribution

function 𝐹(𝑥, 𝑦) is unknown, and we do not have value of 𝑦 for each point 𝑥 in the function

space, but only the training set pairs {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁 . We can insert approximate function in risk

function by considering the empirical risk function:

 𝑅𝑒𝑚𝑝(𝜃) = ∑ 𝐿(𝑦𝑖, 𝑓(𝑥𝑖, 𝜃)
𝑁
𝑖=1 (9)

The ERM principle, which minimizes the empirical risk but sometimes it gives larger

confidence interval. This induction principle is called Empirical Risk Minimization principle;

the popular neural network back propagation algorithm works on this principle. To overcome

these difficulties, the structural risk minimization principles has been used to minimize the

error function. The principle of Structural Risk Minimization (SRM) is intended to minimize

the risk functional with respect to both empirical risk and dimension of the set of functions.

Objective of SRM principle is to minimize both the empirical risk and the confidence interval

(the two terms in the bound). Thus the SRM principle defines a trade-off between the accuracy

and complexity of the approximation by minimizing over both terms.

Illustration:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 170 -

Annual data on the total oilseed production (in million tonnes) in India for the period 1950–51

to 2015–16 were obtained from the agricultural statistics published by the Reserve Bank of

India (RBI), Government of India (RBI Statistics, 2016). The data set covering the years 1950–

51 to 2010–11 was utilized for model development, while the observations from 2011–12 to

2015–16 were reserved for model validation purposes. A summary of the descriptive statistics,

along with the corresponding time series plot for the data under study, is presented in Table 2

and Figure 2, respectively.

Fig.2: Time series plot of Oilseed production of India

The Nonlinear Support Vector Regression (NLSVR) model for oilseed production time series

was developed using the parameter settings outlined in Table 2. Cross-validation was

performed on the time series data, yielding a minimum cross-validation error of 0.035. The

model's performance on both the training and testing datasets is presented in Tables 5 and 6,

respectively.

0

10

20

30

40

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

1
…

2
…

2
…

2
…

2
…

2
…

2
…

2
…

2
…

P
ro

d
u
ct

io
n

(M
T

)

Year

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 171 -

Table 3: Model specification of SVR for Oilseed Production time series

Kernel

function

No. of SVs C 𝜸 𝜺 K fold cross

validation (K)

Cross Validation

Error

RBF 7 8.19 3.06 0.15 10 0.035

Univariate ARIMA Model Fitting

The ARIMA model has been built for oilseed production of India. The original time

series was found to be non-stationary, so first differencing was done to make the stationary

series time series (Figure 3).

Fig. 3. ACF and PACF time series Oilseed production of India

The appropriate model, ARIMA(1,1,0), was selected based on the analysis of the

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots (Figure 3).

A residual autocorrelation check for the ARIMA model applied to the mango production time

series revealed that the residuals are non-autocorrelated, with a chi-square probability value of

0.45. The model’s performance on the training and testing datasets is summarized in Tables 5

and 6, respectively.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 172 -

Based on the lowest values of Mean Squared Error (MSE), Root Mean Squared Error

(RMSE), and Mean Absolute Percentage Error (MAPE) across all models for both the training

dataset (Table 3) and the testing (validation) dataset (Table 4), it can be concluded that the

Nonlinear Support Vector Regression (NLSVR) technique outperformed the ARIMA model.

Despite the high coefficient of variation observed in the dataset (Table 1), the artificial

intelligence-based approach, specifically NLSVR, demonstrated superior performance. This

may be attributed to the ability of nonlinear machine learning techniques to effectively capture

heterogeneous patterns in the data, offering an advantage over the univariate ARIMA model.

Conclusion:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 173 -

ARIMA models are not always suitable for time series data that exhibit nonlinear

structures. In such cases, nonlinear artificial learning techniques like Support Vector Machines

(SVM) can provide a more effective means to enhance forecasting performance. Based on the

findings of this study, it can be inferred that the use of Nonlinear Support Vector Regression

(NLSVR) techniques for modeling and forecasting time series data significantly improves

forecasting accuracy. The NLSVR model demonstrated superior performance in forecasting

oilseed production in India when compared to other models. This approach may be further

extended by incorporating additional machine learning techniques that account for varying

autoregressive and moving average orders.

R codes

nrow(available.packages())

rm(list=ls())

library(forecast)

library(e1071)

library(tseries)

library(ggplot2)

library(tidyverse)

library(fNonlinear)

library(lmtest)

g=read.table(file="rf.txt",header=T)

head(g)

dim(g)

Box.test(g$Rainfall)

rf1=read.table(file="rf1.txt",header=T)

head(rf1)

ggplot(data = rf1, aes(x = Month, y = Rainfall))+ geom_line(color = "#00AFBB", size = 1) +

 labs(x = "Months", y = "Rainfall") + ggtitle("TS Plot of Monthly Rainfall Data")

bdsTest(g$Rainfall, m = 3, eps = NULL, title = NULL, description = NULL)

dim(g)

a1=g$Rainfall[1:1416]

a2=g$Rainfall[1417:1428]

X1=g$Rainfall[1:1416]

Y1=g$Rainfall[2:1417]

X2=g$Rainfall[1416:1427]

Y2=g$Rainfall[1417:1428]

m4=svm(X1,Y1,degree = 3,cost = 45.69, nu=0.5,tolerance = 0.00001,epsilon = 0.00001)

summary(m4)

fitted4 <- fitted(m4) ## Fitted values

mse41=abs(Y1-fitted4)^2

mse4=mean(mse41)

rmse4=sqrt(mse4)

rmse4

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 174 -

Box.test(m4$residuals)

s3=predict(model,X2)

mse61=abs(Y2-s3)^2

mse6=mean(mse61)

rmse6=sqrt(mse6)

Suggested Readings

Cong, Y., Wang J. and Li X. (2016). Traffic Flow Forecasting by a Least Squares Support

Vector Machine with a Fruit Fly Optimization Algorithm, Procedia Engineering,137:

59-68.

Cortes, C. and Vapnik, V. (1995). Support-vector network. Machine Learning, 20, 1-25.

Hong, W.C. and Pai, P.F. (2006). Predicting engine reliability by support vector machines.

International Journal of Advanced Manufacturing Technology, 28: 154-161.

Kumar, T.L.M. and Prajneshu. (2015). Development of Hybrid Models for Forecasting Time-

Series Data Using Nonlinear SVR Enhanced by PSO. Journal of Statistical Theory and

Practice, 9(4): 699-711.

Naveena, K., Rathod, S., Shukla, G. and Yogish, K.J. 2014. Forecasting of coconut production

in India: A suitable time series model, International Journal of Agricultural

Engineering, 7(1):190-193.

Naveena, K., Singh, S., Rathod, S., and Singh, A. 2017. Hybrid ARIMA-ANN Modelling for

Forecasting the Price of Robusta Coffee in India. International Journal of Current

Microbiology and Applied Sciences, 6(7): 1721-1726.

Naveena, K., Singh, S., Rathod, S., and Singh, A. 2017. Hybrid Time Series Modelling for

Forecasting the Price of Washed Coffee (Arabica Plantation Coffee) in India.

International Journal of Agriculture Sciences, 9(10): 4004-4007.

Rathod, S. and Mishra, G.C. (2018). Statistical Models for Forecasting Mango and Banana

Yield of Karnataka, India. Journal of Agricultural Science and Technology. 20(4) July

2018.

Vapnik, V. (2000). The Nature of Statistical Learning Theory. 2nd Edition, Springer-Verlag,

New York.

Vapnik, V., Golowich, S., and Smola, A. (1997). Support vector method for function

approximation, regression estimation, and signal processing, In Mozer, M., Jordan, M

and Petsche, T. (Eds) Advances in Neural Information Processing Systems, 9:281-287,

Cambridge, MA, MIT Press.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 175 -

CART (Classification and Regression Tree) and Decision Tree

Ramasubramanian V. and Abin George

ICAR-National Academy of Agricultural Research Management, Hyderabad

Email: ram.vaidhyanathan@gmail.com

1. Introduction

A decision tree is a supervised machine learning model that uses a tree-like structure to make

decisions. It is composed of nodes, which represent decision points based on input features, and

branches, which represent the outcomes of those decisions. The final leaf nodes represent the

predicted outcomes either a class label in classification or a numeric value in regression.

Decision trees operate by recursively partitioning the input data based on the values of features.

The goal of each split is to reduce impurity i.e., to create subsets that are as homogeneous as

possible with respect to the target variable.

Tree-based classification and regression techniques have gained significant popularity in recent

years. These decision-tree methods are statistical tools used to explore data and make

predictions or classifications of future observations through a set of clearly defined decision

rules. Often referred to as rule induction methods, they are valued for their transparent and

interpretable structure. The Classification and Regression Tree (CART) methodology has

become particularly popular across various disciplines—such as agriculture, medicine, forestry,

and natural resource management—as an effective alternative to traditional methods like

discriminant analysis, multiple linear regression, and logistic regression.

In CART, observations are recursively partitioned into two subgroups based on predictor

variables that show strong association with the response variable. This process yields intuitive

and easily interpretable decision rules. CART models can be applied either as classification

trees when the response variable is categorical, or as regression trees when it is continuous. One

of the major strengths of tree-based approaches is their flexibility; they do not rely on strict

assumptions such as normality or linearity. These methods are non-parametric, robust to

outliers, capable of handling both continuous and categorical variables, and can efficiently

process datasets with large numbers of cases and variables—although they are computationally

more intensive.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 176 -

Unlike traditional techniques such as ordinary least squares (OLS) regression or discriminant

analysis, tree-based models do not require the user to specify the underlying functional form or

distributional assumptions. Moreover, in contrast to other non-parametric approaches like

kernel methods or k-nearest neighbors, tree-based predictors tend to yield relatively simple and

interpretable functions of the input variables, making them especially practical. The origins of

tree-based methods trace back to the 1960s, with the introduction of AID (Automatic Interaction

Detector) by Morgan and Sonquist (1963), initially developed for regression tree analysis. AID

works through a stepwise splitting process, beginning with a single group of observations and

evaluating each predictor variable by sorting the data and examining all possible n−1 binary

splits. The best split is selected by minimizing the within-group sum of squares about the group

mean of the dependent variable. Categorical predictors, which lack a natural order, are handled

differently: for k categories, 2(k-1)-1 possible splits are considered, and their effectiveness is also

evaluated using the within-cluster sum of squares criterion.This methodology was later

extended through the development of THAID (Theta AID) by Morgan and Messenger (1973)

to generate classification trees. A key feature emphasized by Morgan and Sonquist is that AID

naturally captures interaction effects among predictors. Unlike traditional ANOVA models,

where interactions are explicitly specified using cross-product terms, tree-based models capture

interactions structurally—manifested as divergent branches from the same node based on

different variables. This makes decision tree algorithms like AID highly automatic and well-

suited to modeling complex real-world data, where interactions are often inherent and prevalent.

Classification trees operate similarly to regression trees but are used when the dependent

variable is categorical. Kass (1980) introduced the CHAID (Chi-squared AID) algorithm as a

modification of AID for use with categorized variables. CHAID follows a sequential merge-

and-split process based on chi-square statistics. For each predictor:

1. A cross-tabulation is created between the predictor categories and the outcome classes.

2. Pairs of categories with the least significant differences (smallest chi-square) are merged.

3. This merging continues until no further insignificant differences remain.

4. The predictor with the largest overall chi-square value is selected for splitting.

Although CHAID is a computationally efficient heuristic, it does not guarantee the best

predictive split at each step, unlike exhaustive search methods. CHAID is limited to categorical

predictors and cannot accommodate mixed data types. In parallel, within computer science,

Quinlan (1986, 1993) developed a family of algorithms such as ID3 and its successors based

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 177 -

on information theory. These methods build decision trees by selecting splits that maximize

information gain and have been widely adopted in data mining and machine learning

applications. Minz and Jain (2003) have employed Rough Set (RS) theory-based decision tree

model for classification on the premise that in real life while dealing with sets, due to limited

resolution of our perception mechanism, we can distinguish only classes of elements rather than

individuals. Elements within classes are indistinguishable. RS offers a simplified search for

dominant attributes.

Breiman et al. (1984) developed CART (Classification and Regression Trees) which is a

sophisticated program for fitting trees to data. Breiman, later in 1994, developed the bagging

predictors which is a method of generating multiple versions of a predictor and using them to

get an aggregated predictor. A good account of the CART methodology can be found in many

recent books, say, Izenman (2008). An application of classification trees in the field of

agriculture can be found in Sadhu et al. (2014).

2. Broad Outline of CART methodology

The conventional CART methodology is outlined briefly. Following is a schematic

representation of a conventional CART tree structure:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 178 -

In a classification tree, the unique starting point is known as the root node, which contains the

entire learning dataset 𝐿 and appears at the top of the tree structure. Each node in the tree

represents a subset of variables and may either be a non-terminal (parent) or a terminal (leaf)

node. A parent node undergoes a binary split, dividing it into two child nodes—left and right—

based on a decision rule applied to a single predictor variable. If an observation satisfies the

condition, it is directed to one child node; otherwise, it proceeds to the other. A node that is not

further split becomes a terminal node and is assigned a class label. Every observation from the

learning set ultimately falls into one of these terminal nodes, and an unseen observation is

classified according to the label of the terminal node it reaches. To build such tree-structured

models, the CART (Classification and Regression Trees) algorithm employs recursive binary

partitioning, which involves determining the optimal splits of dataset 𝐿 and its successive

subsets. This process includes identifying the variable for the split, formulating the split rule,

deciding when to terminate further splitting, and assigning class labels to terminal nodes. While

the procedures for assigning labels and generating splits are relatively straightforward,

determining the optimal tree size is more complex. Typically, a fully grown tree is first

constructed, and then pruning is applied to obtain a tree of optimal size. In exhaustive search

procedures, the algorithm evaluates all possible binary splits of each subset at every stage,

selecting the one that maximizes node purity. This is assessed using an impurity function, which

measures the heterogeneity of class labels within a node. Common impurity metrics include the

Gini diversity index and entropy. The reduction in impurity resulting from a split is calculated

by subtracting the weighted average impurity of the two child nodes from the impurity of the

parent node. Weights are assigned based on the proportion of samples in each child node. The

split that yields the greatest impurity reduction (or equivalently, the greatest increase in purity)

is selected. Tree construction begins at the root node by evaluating the best split across all

predictor variables using the impurity reduction criterion. The process is recursively repeated

for each child node, considering only the observations contained within them. This layer-by-

layer construction is referred to as recursive partitioning. When each parent node splits into

exactly two child nodes, the result is a binary tree. If the tree is expanded until no further splits

are possible, it is called a saturated tree. Initially, a large, fully expanded tree is grown, often

splitting nodes even when minimal impurity reduction is achieved. To avoid overfitting, a

sequence of smaller subtrees is then generated via pruning, which removes certain splits to

simplify the tree. The challenge lies in determining the right tree complexity. An overly

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 179 -

complex tree may overfit the training data and generalize poorly to new data, whereas a tree

with too few terminal nodes may fail to capture essential patterns, reducing predictive accuracy.

As trees become more complex, initial increases in classification accuracy are often followed

by a deterioration in performance due to overfitting. Therefore, evaluating a tree’s

misclassification rate for future observations is essential. One method for this is the

resubstitution estimate, where the tree is used to classify the same data it was trained on, and

the proportion of misclassified instances is calculated. However, a more reliable estimate is

obtained using an independent test set, which consists of observations from the same population

as the learning set, with known true class labels. The test set error rate is calculated as the

proportion of misclassified test cases. Generally, one-third of the available data is reserved for

the test set, while the remaining two-thirds are used as the learning set. Alternatively, smaller

proportions (e.g., one-tenth) can be used in combination with k-fold cross-validation, such as

10-fold cross-validation, to estimate generalization performance more robustly. A widely used

approach to generating an optimal tree is minimum cost-complexity pruning, which involves

generating a nested sequence of subtrees by systematically removing the weakest links—a

process known as weakest-link pruning. In this method, all nodes descending from a selected

non-terminal node are pruned, converting that node into a terminal one. The node chosen for

pruning is the one whose removal results in the smallest per-node decrease in the resubstitution

misclassification rate. If multiple nodes yield the same reduction, the one associated with the

largest number of nodes removed is preferred.This process results in a set of candidate subtrees,

from which the optimal tree is selected based on its estimated misclassification rate for future

observations—either using a validation set or through cross-validation. This final selection

ensures a balance between tree complexity and predictive accuracy.

3. CART tree growing procedure

Let Y,X) be a multivariate random variable where X represents a vector of K explanatory

variables, which may include both categorical and continuous types, and Y denotes the response

variable. The response variable YYY can either be categorical, taking values from a set of

classes C(=1,...,j,...,J) ,or continuous, taking values on the real line. When YYY is categorical,

the model constructed is a classification tree, whereas for a continuous YYY, the model is a

regression tree.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 180 -

Splitting Strategy

In determining how to divide subsets of L to create two daughter nodes from a parent node, the

general rule is to increase the “purity” of each daughter node with respect to the response

variable. This means minimizing the number of misclassified cases in each node. For a complete

description of splitting rules, it is important to distinguish between continuous and categorical

variables.

For a continuous variable, the number of possible splits at a given node is one less than the

number of its distinctly observed values. Suppose a categorical variable is defined by MMM

distinct categories, l1,l2,...,lM . The set of possible splits at that node is the set of all subsets of

l1,l2,...,lM. Denote by τL and τR the left and right daughter nodes, respectively, emerging from a

parent node τ. In general, there will be 2M-1-1 distinct splits for an MMM-level categorical

variable.

Several types of splits can be considered at each step. For a numerical predictor variable xk, a

subset of L can be divided such that one subset contains xk≤sk , and the other contains xk>sk,,

where sks_ksk is an observed value of xk . For a categorical predictor variable xk with class

labels from a finite set Dk , a subset of L can be divided such that one subset contains xk ∈ Sk,

 and the other contains xk ∉ Sk, where Sk is a nonempty proper subset of Dk .

At each node, the tree-growing algorithm determines the variable on which it is “best” to split.

To do this, all possible splits across all variables at that node are evaluated. Each split is

enumerated, assessed, and the one that maximizes a chosen criterion is selected.

Node Impurity Function

During recursive partitioning, all allowable splits of a subset of LLL are examined, and the split

that results in the highest increase in node purity is selected. This is achieved using an “impurity

function,” which quantifies the distribution of response variable classes in a node. The function

is designed to be maximal when all classes are equally represented (i.e., the node is most

impure), and minimal when the node is pure (i.e., all samples belong to the same class).

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 181 -

To identify the best split for each variable, a “goodness of split” criterion is used. Among all

splits, the one that results in the greatest reduction in impurity is chosen. Two commonly used

impurity functions are the Gini diversity index and the entropy-based information gain.

Let, П1, П2, ... , ПK be the K≥2 classes. For node τ, the node impurity function is defined as

𝑖(𝜏) = (𝑝(1|𝜏),… , 𝑝(𝐾|𝜏)) where 𝑝(𝑘|𝑡) is an estimate of𝑃(𝑋 ∈ Π𝑘|𝜏), , the conditional

probability that an observation X is in Пk given that it falls into node τ. Under this set up, the

Entropy function is given by, 𝑖(𝜏) = −∑ 𝑝(𝑘|𝜏)𝑙𝑜𝑔𝑝(𝑘|𝜏)𝐾
𝑘=1 . When there are only two

classes, the entropy function reduces to 𝑖(𝜏) = −𝑝𝑙𝑜𝑔𝑝 − (1 − 𝑝) log(1 − 𝑝), where, 𝑝 =

𝑝(1|𝜏) . The other impurity function, i.e. the Gini diversity index is defined as, 𝑖(𝜏) =

∑ 𝑝(𝑘|𝜏)𝑝(𝑘′𝑘=𝑘′ |𝜏) = 1 − ∑ {𝑝(𝑘|𝜏)}2𝑘 . In the two class case, the Gini index reduces to

𝑖(𝜏) = 2𝑝(1 − 𝑝).

Choosing the best split for a variable:

To evaluate the effectiveness of a potential split, the impurity function value is first calculated

using the cases in the learning sample corresponding to the parent node. From this, the weighted

average of the impurity values of the resulting daughter nodes is subtracted. The weights are

proportional to the number of cases in the learning sample assigned to each daughter node. The

result of this calculation represents the decrease in overall impurity that would result from the

split. In the tree-growing procedure, all permissible ways of splitting a subset of L are

considered. Among them, the split that yields the greatest reduction in node impurity or,

equivalently, the greatest increase in node purity—is selected. This method ensures that the tree

evolves in a manner that increasingly separates the data based on class homogeneity. The

splitting procedure is elaborated further in the following sections.

Suppose, at node τ, a split s is applied so that a proportion pL of the observations drops down

to the left daughter node τL and the remaining proportion pR drops down to the right daughter

node τR. For example, suppose there is a dataset in which the response variable Y has two

possible values, 0 and 1. Suppose that one of the possible splits of the explanatory variables Xj

is Xj≤ c vs. Xj>c, where c is some value of Xj. Then the 2×2 table can be prepared as

Split

Class of Y

Row total
1 0

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 182 -

Xj ≤ c n11 n12 n1+

Xj > c n21 n22 n2+

Column total n+1 n+1 n++

Consider, first, the parent node τ. If pL is estimated by n+1/n++ and pR by n+2/n++, and Gini’s

index is used as the impurity measure, then the estimated impurity function is,

𝑖(𝜏) = 2(
𝑛+1
𝑛++

)(1 −
𝑛+1
𝑛++

) = 2(
𝑛+1
𝑛++

)(
𝑛+2
𝑛++

)

Now consider the daughter nodes, τL and τR. For Xj≤ c, pL is estimated by n11/ n1+ and pR by

n12/ n1+, and for Xj> c, pL is estimated by n21/ n2+ and pR by n22/ n2+. Then the following two

quantities are computed,

𝑖(𝜏𝐿) = 2 (
𝑛11
𝑛1+

) (1 −
𝑛11
𝑛1+

) = 2 (
𝑛11
𝑛1+

) (
𝑛22
𝑛2+

)

The goodness of a split s at node τ is given by the reduction in impurity gained by splitting the

parent node τ into its daughter nodes, τR and τL, Δ𝑖(𝜏) = 𝑖(𝜏) − {𝑝𝐿𝑖(𝜏𝐿) + 𝑝𝑅𝑖(𝜏𝑅)}. The best

split for the single variable Xj is the one that has the largest value of Δi(S, T) over all ∋ 𝑆𝑗 , the

set of all possible distinct splits for Xj.

Recursive partitioning: To construct a decision tree, the process begins at the root node, which

consists of the full learning dataset L. Using a predefined goodness-of-split criterion, the

algorithm evaluates each predictor variable and identifies the optimal split at the root node as

the one that yields the maximum reduction in impurity across all possible single-variable splits.

Once the best split is selected and implemented at the root node, the algorithm proceeds to split

each resulting daughter node in the same manner. For each daughter node, calculations are

performed using only the subset of data corresponding to that node, rather than the entire

dataset. This procedure of recursively partitioning the data into increasingly homogeneous

subsets continues layer by layer, and is referred to as recursive partitioning.

When every parent node gives rise to exactly two daughter nodes, the resulting structure is

known as a binary tree. If the binary tree continues to grow until no further splits are possible—

meaning each terminal node contains data that cannot be further partitioned—the tree is said to

be saturated. In high-dimensional classification problems, allowing the tree to grow without

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 183 -

constraints can result in a structure that becomes overwhelmingly large and difficult to interpret.

To prevent such unmanageable growth, it is often useful to impose restrictions on the tree-

building process. One such restriction involves defining a node as terminal if it contains fewer

than a specified minimum number of observations, denoted nmin . If the number of cases in a

node τ satisfies n(τ) ≤ nmin , then the node is not split further. This threshold acts as a control on

tree growth, where larger values of nmin result in more aggressive limitations.

Another early stopping approach involves halting the splitting process when the largest value

of the goodness-of-split criterion at a given node falls below a pre-specified threshold.

However, this method is not always effective. There are instances where a split may yield only

a minor decrease in impurity at a certain stage, but can lead to significant reductions in impurity

in subsequent splits of its descendant nodes. As a result, relying solely on such stopping rules

can prevent the algorithm from discovering more meaningful partitions.

A more effective alternative is to allow the tree to grow to a considerable size initially, even if

some splits produce only modest reductions in impurity. Once a large tree has been grown, a

pruning process can then be applied to simplify the structure. During pruning, previously made

splits are removed, resulting in a sequence of smaller and more manageable subtrees. This post-

processing step produces trees with fewer nodes, allowing for a balance between model

complexity and predictive accuracy. By starting with a large tree and then pruning it down, the

model has a better chance of exploring informative partitions in the data before settling on a

simpler and more generalizable structure. This grow-then-prune approach is commonly

preferred, particularly in high-dimensional settings, as it avoids premature termination of

potentially valuable splits and facilitates the construction of more effective classification

models.This aspect of “pruning” will be discussed in the later sections. Thereafter, assignment

of a class with a terminal node is done by associating a class with each of the terminal node by

the rule of majority. Suppose at terminal node τ there are n(τ) observations, of which nk(τ) are

from class ПK, k=1, 2, …, K. Then, the class which corresponds to the largest of the {nk(τ)} is

assigned to τ. This is called the plurality rule i.e. the node τ is assigned to class Пi if 𝑝(𝑖|𝜏) =

𝑚𝑎𝑥𝑖𝑝(𝑘|𝜏) .

Estimating the misclassification rate and pruning procedure: The crucial aspect of constructing

a reliable tree-structured classification model lies in determining the appropriate complexity of

the tree. If nodes are continuously split until no two distinct values of X from the learning

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 184 -

sample share the same node, the model may overfit the training data, resulting in poor

classification performance on future observations. Conversely, a tree with too few terminal

nodes may underutilize the available information in the learning sample, thereby compromising

its classification accuracy. Typically, during the tree-growing process, predictive accuracy

improves as the partition becomes more refined with additional nodes. However, beyond a

certain point, increasing complexity leads to deterioration in the model's ability to generalize,

as evidenced by a rise in the misclassification rate for unseen data.To compare the predictive

performance of different tree-structured models, it is essential to estimate each tree’s

misclassification rate on future observations, commonly referred to as the generalization error.

Another important metric is the resubstitution estimate of the misclassification rate. This is

calculated by applying the tree to classify the same cases from the learning sample used in its

construction, and then computing the proportion of misclassified cases.

The resubstitution estimate of the misclassification rate R(τ) of an observation at node τ is

calculated as follows: 𝑟(𝜏) = 1 −𝑚𝑎𝑥𝑘𝑝(𝑘|𝜏) which, for the two class case, reduces to

𝑟(𝜏) = 1 −max(𝑝, 1 − 𝑝) = min (𝑝, 1 − 𝑝).

However, it does not work well to use the resubstitution estimate of the misclassification rate.

Because, if no two members of the learning sample have the same value of X, then a tree having

a resubstitution misclassification rate of zero can be obtained by continuing to make splits until

each case in the learning sample is by itself in a terminal node. This may be due to the condition

that the class associated with a terminal node will be that of the learning sample case

corresponding to the node, and when the learning sample is then classified using the tree, each

case in the learning sample will drop down to the terminal node that it created in the tree-

growing process, and will have its class match the predicted class for the node. Thus the

resubstitution estimate can be a very poor estimate of the tree’s misclassification rate for the

future observations, since it can decrease as more nodes are created, even if the selection of

splits is just responding to “noise” in the data, and not to the real structure. This phenomenon

is similar to R2 increasing as more terms are added to a multiple regression model, with the

possibility of R2 nearing one if enough terms are added, even though more complex regression

models can be much worse predictors than simpler ones involving fewer variables and terms.

Let T be the classification tree and let 𝑇 ̃ = {𝑇1, 𝑇2, … , 𝜏𝐿} denote the set of all terminal nodes

of T. The misclassification rate for T can now be estimated by 𝑅(𝑇) = ∑ 𝑅(𝑇)𝑃(𝜏) =𝑇=�̃�

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 185 -

∑ 𝑅(𝑇𝑙
𝐿
𝑙=1)𝑝(𝜏𝑙) for T, where P(τ) is the probability that an observation falls into node τ. If P(τl)

is estimated by the proportion p(τl) of all observations that fall into node τl, then, the

resubstitution estimate of R(T) is 𝑅𝑟𝑒(𝑇) = ∑ 𝑟(𝜏1)𝑝(𝜏1) = ∑ 𝑅𝑟𝑒𝐿
𝑙=1

𝐿
𝑙=1 (𝜏1) where,

𝑅𝑟𝑒(𝑇𝑙) = 𝑟(𝑇𝑙)𝑝(𝑇𝑙).

A more reliable estimate of a decision tree’s misclassification rate can be obtained through the

use of an independent test set, which consists of observations drawn from the same underlying

population or distribution as the training (learning) set. Similar to the learning set, each

observation in the test set possesses known values of the predictor variables along with the true

class labels. The misclassification rate estimated from the test set is defined as the proportion

of test set observations incorrectly classified when their predicted classes are determined using

the tree developed from the learning set. Typically, it is recommended that approximately one-

third of the total observations be reserved as a test set, while the remaining two-thirds are used

for training. However, in some instances, a smaller proportion, such as one-tenth, may also be

considered adequate for the test set.

Regardless of the approach adopted to estimate the misclassification rate, the central challenge

remains: how to construct the most accurate classification tree, or more specifically, how to

generate a set of candidate trees from which the best-performing one can be selected based on

its estimated misclassification rate. As noted earlier, implementing a stopping rule to determine

the optimal tree size tends to be ineffective. Instead, it is generally advisable to first grow a

fully expanded tree and then apply a pruning procedure, wherein certain nodes are

systematically removed to obtain simpler subtrees. This pruning process yields a finite sequence

of nested subtrees, where each subsequent tree is a proper subtree of the previous one. The

classification accuracy of each subtree in this sequence is evaluated using reliable estimates of

misclassification rate, derived either from a test sample or through cross-validation techniques.

Ultimately, the subtree with the best performance is selected as the final classification model.

Pruning procedure: An effective method for generating a meaningful sequence of trees of

varying sizes is the application of minimum cost-complexity pruning. This technique involves

creating a nested series of subtrees from the original, fully grown tree through a process known

as weakest-link cutting. In this procedure, all descendant nodes stemming from a particular

nonterminal node are removed—effectively converting that node into a terminal one. The node

selected for pruning is the one whose removal yields the smallest decrease in the resubstitution

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 186 -

misclassification rate per pruned node. When multiple pruning options result in identical per-

node decreases in the resubstitution error, the preference is given to the option that eliminates

the largest number of nodes. This ensures a more substantial simplification of the tree while

maintaining comparable predictive performance. In cases of minimal pruning, only two

daughter terminal nodes are pruned from a single parent node, turning it into a terminal node.

However, in other situations, a more extensive set of descendant nodes may be pruned

simultaneously from a deeper internal node within the tree structure.

Instead of using the resubstitution measure Rre(τ) as the estimate of R(T), it is modified for tree

pruning. Let α ≥ 0 be a complexity parameter. For any node τЄT, the cost-complexity measure

Rα(τ) is given by 𝑅𝛼(𝑇) = 𝑅𝑟𝑒(𝑇) + 𝛼. A cost-complexity pruning measure for a tree T is

defined as 𝑅𝛼(𝑇) = ∑ 𝑅𝛼(𝑇1) = 𝑅
𝑟𝑒𝐿

𝑙=1 (𝑇) + 𝛼|𝑇|̃, where, |�̃�| = 𝐿 is the number of terminal

nodes in the subtree T, which is a measure of tree complexity, and α is the contribution to the

measure for each terminal node. One can think of𝛼|�̃�| as a penalty term for tree size, so that

Rα(T) penalizes Rre(T) for generating too large a tree. For each α, the subtree T(α) of Tmax that

minimizes Rα(T), is selected. To minimize this measure, for small values of α, trees having a

large number of nodes, and a low resubstitution estimate of misclassification rate, will be

preferred. Thus, the value of α determines the size of the tree. When α is very small, the penalty

term will be small, and so the size of the minimizing subtree T(α), which will essentially be

determined by Rre(T(α)), will be large. For large enough values of α, a one node tree will

minimize the measure. For example, suppose α is set to zero, i.e. α=0 and the tree Tmax is grown

so large that each terminal node contains only a single observation; then, each terminal node

takes on the class of its solitary observation, every observation is classified correctly, and

Rre(Tmax)=0. So, Tmax minimizes R0(T). As the value of α is increased, the minimizing subtree

T(α) will have fewer and fewer terminal nodes. When α is very large, it results in a tree having

only the root node.

Since the resubstitution estimate of misclassification rate is generally overoptimistic and

becomes unrealistically low as more nodes are added to a tree, it is expected that there is some

value of α that properly penalizes the overfitting of a tree which is too complex, so that the tree

which minimizes Rα(T), for the proper value of α, will be a tree of about the right complexity

(to minimize the misclassification rate of the future observations). Even though the proper value

of α is unknown, utilization of the weakest-link cutting procedure explained earlier guarantees

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 187 -

that for each value of α(≥0), a subtree of the original tree that minimizes Rα(T) will be a member

of the finite nested sequence of subtrees produced.

It is worth noting that although α is defined on the interval [0,∞), the number of subtrees of T

is finite. Suppose that, for α=α1, the minimizing subtree is T1=T(α1). As the value of α is

increased, T1 continues to be the minimizing subtree until a certain point, say, α=α2, is reached,

and a new subtree, T2=T(α2), becomes the minimizing subtree. As α is increased further, the

subtree T2 continues to be the minimizing subtree until a value of α is reached, α=α3, say, when

a new subtree T3=T(α3) becomes the minimizing subtree. This argument is repeated a finite

number of times to produce a sequence of minimizing subtrees T1,T2,T3, …. The aforesaid

discussion states that a finite increasing sequence of complexity parameters,

0 = 𝛼0 < 𝛼1 < 𝛼2 < 𝛼3 < ⋯ < 𝛼𝑀 corresponds to a finite sequence of nested subtrees, say,

M in number, of the fully grown tree,𝑇𝑚𝑎𝑥 = 𝑇0 > 𝑇1 > 𝑇2 > ⋯ > 𝑇𝑀.

Selecting the right sized tree among the candidate sub-trees: The sequence of subtrees produced

by the pruning procedure serves as the set of candidate subtrees for the model, and to obtain the

classification tree, all that remains to be done is to select the one which will hopefully have the

smallest misclassification rate for future observations. The selection is based on estimated

misclassification rates, obtained using a test set or by cross validation. Selection based on test

set is discussed subsequently.

If an independent test set is available, it is used to estimate the error rates of the various trees

in the nested sequence of subtrees, and the tree with minimum estimated misclassification rate

can be selected to be used as the tree-structured classification model. For this purpose, the

observations in the learning dataset (L) are randomly assigned to two disjoint datasets, a training

dataset (D) and a test set (T), where D∩T =Ф. Suppose there are nT observations in the test set

and that they are drawn independently from the same underlying distributions as the

observations in D. Then the tree Tmax is grown from the learning set only, and it is pruned from

bottom up to give the sequence of subtrees 𝑇0 > 𝑇1 > 𝑇2 > ⋯ > 𝑇𝑀 , and a class is assigned to

each terminal node. Once a sequence of subtrees has been produced, each of the nT test-set

observations are dropped down the tree Tk. Each observation in T is then classified into one of

the different classes. Because the true class of each observation in T is known, R(Tk) is estimated

by Rts(Tk), which is (4) with α=0; i.e., Rts(Tk) = Rre(Tk), the resubstitution estimate computed

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 188 -

using the independent test set. When the costs of misclassification are identical for each class,

Rts(Tk) is the proportion of all test set observations that are misclassified by Tk. These estimates

are then used to select the best pruned subtree T* by the rule, 𝑅𝑡𝑠(𝑇∗) = 𝑚𝑖𝑛𝑘𝑅
𝑡𝑠(𝑇𝑘) and

Rts(T*) is its estimated misclassification rate. A popular alternative is to recognize that since

all of the error rates are not accurately known, but only estimated, it could be that a simpler tree

with only a slightly higher estimated error rate is really just as good as or better than the tree

having the smallest estimated error rate.

4. R code for CART based Class prediction (Classification Tree)

Install and load required packages

install.packages(c("rpart", "rpart.plot", "caret", "e1071"))

library(rpart)

library(rpart.plot)

library(caret)

library(e1071)

Classification Tree on iris data

Build CART model

set.seed(123)

iris_tree <- rpart(Species ~ ., data = iris, method = "class")

Plot tree

rpart.plot(iris_tree, type = 3, extra = 101, fallen.leaves = TRUE, main = "CART - Classification

Tree for Iris")

Predict on training data

iris_pred <- predict(iris_tree, iris, type = "class")

Confusion matrix

conf_matrix <- confusionMatrix(iris_pred, iris$Species)

print(conf_matrix)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 189 -

The CART classification tree for the Iris dataset effectively separates the three iris species—

setosa, versicolor, and virginica—using two key variables: Petal.Length and Petal.Width. The

first split occurs at Petal.Length < 2.5, which perfectly isolates all 50 setosa flowers,

demonstrating that this species has distinctly short petals. For flowers with Petal.Length ≥ 2.5,

a second split at Petal.Width < 1.8 distinguishes between versicolor and virginica. Flowers with

narrower petals (Petal.Width < 1.8) are mostly versicolor (49 correct, 5 misclassified), while

those with wider petals (≥ 1.8) are mostly virginica (45 correct, 1 misclassified). This simple,

interpretable tree highlights the strong predictive power of petal dimensions in distinguishing

iris species and offers an easily explainable classification model with high accuracy.

5. R code for CART based Prediction (Regression Tree)

Install and load required packages

install.packages(c("rpart", "rpart.plot", "caret", "e1071"))

library(rpart)

library(rpart.plot)

library(caret)

library(e1071)

Regression Tree on mtcars

Build CART model

set.seed(123)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 190 -

car_tree <- rpart(mpg ~ ., data = mtcars, method = "anova")

Plot tree

rpart.plot(car_tree, type = 3, extra = 101, fallen.leaves = TRUE, main = "CART - Regression

Tree for mtcars")

Predict on training data

car_pred <- predict(car_tree, mtcars)

Calculate RMSE

rmse <- sqrt(mean((car_pred - mtcars$mpg)^2))

cat("\nRMSE for Regression Tree on mtcars dataset:", round(rmse, 3), "\n")

The CART regression tree for the mtcars dataset predicts the car's mileage (mpg) using two key

variables: the number of cylinders (cyl) and horsepower (hp). The tree first splits the data based

on whether a car has 5 or more cylinders. Cars with fewer than 5 cylinders (typically 4-cylinder

vehicles) form a group with the highest average mileage of 27 mpg, indicating better fuel

efficiency. Among cars with 5 or more cylinders, those with horsepower under 193 have a

moderate average mileage of 18 mpg, while those with 193 or more horsepower have the lowest

mileage of 13 mpg, reflecting the inefficiency of powerful engines in larger vehicles. The model

clearly demonstrates that fewer cylinders and lower horsepower lead to better fuel economy in

cars.

References:

Breiman, L., Freidman, J.H., Olshen, R.A. and Stone, C.J. (1984). Classification and regression

trees. Wadsworth, Belmont CA.

Izenman, A.J. (2008). Modern multivariate statistical techniques: Regression, classification

and manifold learning. Springer, New York.

Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical

Data, Applied Statistics, 29(2), 119-127.

Morgan, J. N., & Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a

Proposal. Journal of the American Statistical Association, 58(302), 415-434.

Minz, S. and Jain, R. (2003). Rough set based decision tree model for classification, In:

Kambayashi, Y., Mohania, M., Wöß, W. (eds) Data Warehousing and Knowledge

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 191 -

Discovery. DaWaK 2003. Lecture Notes in Computer Science, vol 2737. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45228-7_18.

Morgan, J.N. and Messenger, R.C. (1973). THAID: a sequential search program for the analysis

of nominal scale dependent variables. Institute for Social Research, University of

Michigan, Ann Arbor, MI.

Quinlan, J. R. (1986). Induction of Decision Trees, Machine Learning, 1, 81-106.

https://link.springer.com/article/10.1007/BF00116251.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers.

Sadhu, S.K., Ramasubramanian, V., Rai, A. and Kumar, A. (2014). Decision tree based models

for classification in agricultural ergonomics, Statistics and Applications, 12(1&2), 21-

33.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 192 -

Extreme Learning Machine (ELM)

Kapil Choudhary

College of Agriculture, Sumerpur (Pali)- 306902, Agriculture University, Jodhpur

Email: kapiliasri@gmail.com

Introduction

Time series forecasting involves the prediction of future values based on historical observations

and plays a critical role in various domains such as finance, energy, agriculture, weather

prediction, and supply chain management. With increasing uncertainty, globalization, and data

availability, the need for accurate and efficient forecasting models has become more significant

than ever. Effective time series forecasting assists decision-makers in planning, resource

allocation, risk mitigation, and responding dynamically to real-time trends and anomalies.

However, time series forecasting is inherently complex due to its nonlinear, dynamic, and often

noisy nature, especially when affected by external factors such as market fluctuations, seasonal

effects, or environmental variability. Traditional statistical models like ARIMA, exponential

smoothing, or Box–Jenkins methodologies often struggle to capture such nonlinear patterns

effectively, particularly in the presence of large, high-frequency, or multivariate datasets.

Recently, artificial neural networks (ANNs) have shown great promise in modeling and

forecasting time series data owing to their capacity for nonlinear mapping and adaptability.

Among them, extreme learning machine (ELM), a relatively novel learning algorithm for

single-hidden-layer feedforward neural networks (SLFN), has gained increasing attention due

to its fast learning speed and excellent generalization performance. Unlike conventional

backpropagation-based ANNs, ELM randomly assigns the input weights and biases and

analytically computes the output weights using the Moore–Penrose generalized inverse,

eliminating issues like local minima, overfitting, and long training times. Numerous studies

have demonstrated that ELM outperforms conventional gradient-based learning algorithms in

terms of speed and accuracy in time series applications ranging from energy load prediction to

stock market analysis. Its structural simplicity and non-iterative training approach make it

highly suitable for real-time forecasting tasks and large-scale data environments. However, due

to the randomness in the assignment of input weights and hidden biases, ELM’s forecasting

performance can vary across runs. To mitigate this issue, ensemble or integrated ELM

frameworks have been proposed, where the final forecast is obtained by aggregating the outputs

of multiple ELM models, leading to improved robustness and accuracy.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 193 -

Moreover, preprocessing steps such as normalization are typically applied to scale the data

within a defined range, which not only facilitates faster training but also prevents saturation of

activation functions. A subsequent denormalization step is essential to restore the predicted

values to their original scale.

2. Extreme learning machine (ELM)

ELM is a powerful learning technique for single-hidden-layer feedforward neural networks

(SLFNs) known for its fast learning speed and strong generalization capability. ELM is an

efficient neural network-based model which is similar in architecture to a feedforward neural

network (FFNN). However, unlike FFNN, the learning algorithm of this methodology does not

require the tuning of every parameter of its network (weights and biases). In both conventional

FFNN and ELM, the hidden nodes are initialized randomly, but the gradient descent and

backpropagation algorithm of FFNN keep updating their parameters till the loss function is

minimized. However, in the ELM, the random values of hidden layer units stay constant

throughout the whole training process. The novelty in the learning algorithm of ELM is that

the parameters or weights that connect the hidden layer to the output layer are determined by

Moore–Penrose generalized inverse technique, which ultimately makes the algorithm time-

efficient (Qu et al., 2016). The time series data, which may include historical records of a

variable of interest (e.g., stock prices, energy consumption, crop yield, etc.), is first

preprocessed to extract meaningful input–output pairs. Typically, a sliding window approach

is employed to transform the univariate or multivariate time series into a supervised learning

format. That is, previous lagged values of the series (and possibly exogenous variables) are

used as inputs, while the target variable at the next time step is considered the output. After

feature construction, the dataset is split into three subsets: training, testing, and forecasting (or

validation). Prior to training, both training and testing datasets are normalized to a defined

range (e.g., [0, 1] or [−1, 1]) to ensure stable and efficient learning and to prevent neuron

saturation. The ELM model is then trained using the training set, wherein the input weights and

biases are randomly assigned, and the output weights are computed analytically using the

Moore Penrose generalized inverse.

Once the ELM is trained, it is used to forecast future values by directly applying the learned

model on the forecasting dataset. After predictions are generated, an unnormalization step is

carried out to convert the outputs back to their original scale for evaluation and interpretation.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 194 -

The advantage of ELM lies in its simplicity, high computational efficiency, and ability to

handle nonlinear and nonstationary patterns often present in time series data.

The whole procedure is described as follows:

Suppose a time series converted into supervised learning format as a collection of 𝑆 samples,

{𝒚𝑖, 𝑡𝑖}; 𝑖 = 1,… , 𝑆 where 𝒚𝒊 = 𝑦𝑖1, 𝑦𝑖2, … , 𝑦𝑖𝑝 represents input patterns and 𝑡𝒊 is the output for

𝑖𝑡ℎ sample. If the model is to be made using 𝑝 input nodes and 𝑞 hidden nodes, then the final

output through a single output node can be represented by

 𝑡𝑖 = ∑ 𝜕𝑚𝜓(𝒘𝑚. 𝒚𝑖 + 𝑏𝑚)

𝑞

𝑚=1

 (1)

where, 𝒘𝑚 = [𝑤𝑚1, 𝑤𝑚2, … , 𝑤𝑚𝑝]
′ is the synaptic weight between jth input neuron ; 𝑗 =

1, … , 𝑝 and mth hidden neuron ; 𝑚 = 1,… , 𝑞 , 𝜕𝑚 is the output weight between mth hidden

neuron and the output neuron, mb is the bias and 𝜓(.) is the activation function of the hidden

nodes.

As discussed earlier, the Extreme Learning Machine (ELM) differs from traditional single-

hidden-layer feedforward neural networks (SLFNs) in its training mechanism. In ELM, the

input weights and hidden layer biases are randomly generated and remain fixed throughout the

training process. This eliminates the need for iterative tuning or gradient-based optimization,

which is often required in conventional neural networks. The only parameters that need to be

determined are the output weights, which connect the hidden layer to the output layer. The

evaluation of these output weights is equivalent to solving a linear system of the form denoted

in matrix notation as 𝐇𝛛 = 𝐓 where

 𝐇 =

[

𝜓(𝒘1. 𝒚1 + 𝑏1) . . . 𝜓(𝒘𝑚. 𝒚1 + 𝑏𝑚)

.

.

.

. . .

. . .

. . .

.

.

.
𝜓(𝒘1. 𝒚𝑆 + 𝑏1) . . . 𝜓(𝒘𝑚. 𝒚𝑆 + 𝑏𝑚)]

𝑺×𝒎

 (2)

 and called the hidden layer output matrix of the ELM, 𝛛 = [𝜕1, 𝜕2, … , 𝜕𝑚]
′ and 𝐓 =

[𝑡1, 𝑡2, … , 𝑡𝑆]
′ . The parameters in 𝛛 is estimated through least squares fitting by solving

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 195 -

𝑚𝑖𝑛
𝛛

1

𝑆
‖𝐓 − 𝐇𝛛‖2

This will give the minimum norm least square solution of output weight �̂� = 𝐇†T, where 𝐇†

is the Moore–Penrose generalized inverse of the hidden layer output matrix H.

3. General Algorithm for Extreme Learning Machine (ELM)

The general algorithm for training an Extreme Learning Machine (ELM) can be described in

the following steps:

Step 1: Randomly assign input weights 𝒘𝑚 = [𝑤𝑚1, 𝑤𝑚2, … , 𝑤𝑚𝑝]
′ and biases mb for each

hidden node.

Step 2: Compute the hidden layer output matrix 𝐇 applying the activation function 𝜓() to the

linear combination of inputs and biases. For each input sample xjx_j, the output of the hidden

layer is computed as

ℎ𝐽 = [𝜓(𝒘1. 𝒚1 + 𝑏1), 𝜓(𝒘2. 𝒚2 + 𝑏2), …. 𝜓(𝒘𝑚. 𝒚1 + 𝑏𝑚)]

Step 3: Calculate the output weights �̂� = 𝐇†T, by solving the linear system where 𝐇† is the

Moore–Penrose generalized inverse of the hidden layer output matrix H.

R package for practical implications

 elm

library (nnfor)

fit =elm(AirPassengers)

print(fit)

plot(fit)

frc = forecast(fit,h=36)

plot(frc)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 196 -

Suggested Readings

• Wong, W. K., and Guo, Z. X. (2010). A hybrid intelligent model for medium-term

sales forecasting in fashion retail supply chains using extreme learning machine and

harmony search algorithm. International Journal of Production Economics, 128(2),

614-624.

• Huang, G. B., Zhu, Q. Y., and Siew, C. K. (2006). Extreme learning machine: theory

and applications. Neurocomputing, 70(1-3), 489-501.

• Chen, X., Dong, Z. Y., Meng, K., Xu, Y., Wong, K. P., and Ngan, H. W. (2012).

Electricity price forecasting with extreme learning machine and bootstrapping. IEEE

transactions on power systems, 27(4), 2055-2062.

• Rong, H. J., Ong, Y. S., Tan, A. H., and Zhu, Z. (2008). A fast pruned-extreme

learning machine for classification problem. Neurocomputing, 72(1-3), 359-366.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 197 -

Random Forest Regression

Ramasubramanian V. and Abin George

ICAR-National Academy of Agricultural Research Management, Hyderabad

Email: ram.vaidhyanathan@gmail.com

1. Introduction

The word forest in ‘Random Forest’ refers a group of decision trees and the word random

refers to the way the results of the trained decision trees are combined. Before starting to

discuss random forest regression (RFR), the preliminaries of building decision trees are briefly

described and the logic for resorting to RFR is explained.

2. Preliminaries and terminologies

Some preliminaries and terminologies related to decision trees are given here. For some

supplementary information, the readers are also referred to read the lecture notes on “CART

(Classification And Regression Tree) and Decision Tree” which lecture is also a part of the

training programme in which this lecture is also there.

Decision trees: Decision trees are intuitive and interpretable models used for both

classification and regression tasks. In these models, predictions are made through a series of

hierarchical decisions based on comparisons of predictor variables with threshold values. Each

decision leads to a branch, ultimately arriving at a leaf node that represents the predicted

outcome. Visually, decision trees can be represented as flowcharts, making them easy to

understand and explain. Geometrically, they work by partitioning the predictor (feature) space

into a set of distinct, non-overlapping regions. Within each region, a prediction is made,

typically by taking the average (in regression) or the majority class (in classification) of the

training data points contained in that region. The core idea is to recursively divide the feature

space into simpler sub-regions using splitting rules. These rules are derived from the data and

are chosen to optimize a certain criterion (e.g., reducing variance or impurity). Because these

splits can be naturally visualized as a tree structure, such models are aptly named decision

trees.

Root node: At the top of the tree lies the root node, which represents the entire dataset. From

this node, the model makes its first decision or split, selecting the predictor variable and

threshold value that most effectively reduce the variation in the target variable.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 198 -

Internal node: Internal node, also known as a decision node, continues the process of

partitioning the data based on specific values of the predictor variables. These nodes represent

points where the dataset is divided further using decision rules, such as "Is variable X less

than or equal to a certain value?". The goal at each internal node is to create child nodes that

are more homogeneous with respect to the response variable than their parent node.

Leaf node: The tree continues to grow until it reaches leaf nodes or terminal nodes, which are

the end points of the tree. In a regression tree, each leaf node contains a predicted value,

typically the mean of the target variable for the observations in that node. This value is used

as the model’s prediction when a new observation falls into the corresponding region of the

feature space.

Splitting: The process of dividing the data is called splitting. Each split is made using a rule

that aims to reduce the impurity or variation of the target variable within the resulting nodes.

For regression trees, the most common measure of impurity is variance or mean squared error

(MSE). The model evaluates potential splits and selects the one that results in the greatest

reduction in variance, meaning that it produces child nodes with more similar target values

than the parent node.

Pruning: Growing a tree without constraints can lead to overfitting, where the model captures

noise in the training data rather than the underlying pattern. To address this, trees are often

pruned. Pre-pruning involves setting constraints such as the maximum depth of the tree or the

minimum number of observations required to split a node. Post-pruning, on the other hand,

involves building a full tree and then trimming branches based on performance on validation

data.

Depth of the tree: It refers to the number of levels or splits from the root node to the deepest

leaf node. While deeper trees can model complex relationships, they are more prone to

overfitting. Therefore, striking a balance between model complexity and generalizability is

essential.

3. Genesis of need for improved models like Random Forest regression

Limitations of decision trees: One major problem with decision trees is that they can only

split data along straight lines based on one feature at a time (called axis-aligned splits). So, if

the relationship in the data is complex, the tree needs to grow very deep with many splits to

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 199 -

try and capture that complexity. Deep trees tend to memorize the training data too well, a

problem known as overfitting. This means the model performs very well on the training set

but poorly on new, unseen data. Due to this high variance and tendency to overfit, decision

trees often perform worse compared to other models like Random Forests or Gradient

Boosting Machines.

Bagging (short form for Bootstrap Aggregating): To solve the overfitting problem and reduce

the variance of decision trees, a technique called Bagging (Bootstrap Aggregating) is used.

The idea is simple but powerful. First, many new training datasets are created by randomly

sampling the original dataset with replacement - this process is called bootstrapping. Then,

train a separate decision tree is trained on each of these bootstrapped datasets. Since each

sample is slightly different, each tree learns slightly different patterns. Once all trees are

trained, predictions are made by combining their outputs. For regression tasks, this means

averaging the predictions from all the trees. For classification, a majority vote will decide the

final class label. This process of combining many models helps to reduce the risk of overfitting

from any one tree. Even though individual trees may be overfit, their errors tend to cancel

each other out when averaged, resulting in a more stable and accurate overall prediction.

Bagging has two major benefits: high expressiveness and low variance. Each individual

decision tree is allowed to be fully grown, so it can model complex patterns. At the same time,

because we average many different trees, the result becomes much less sensitive to the noise

or randomness in the training data. This leads to a model that is both powerful and reliable.

Thus, Bagging is an effective way to improve decision trees, and it forms the basis for more

advanced models like Random Forests.

In bagging, many decision trees are created by training each one on a different random sample

(called a bootstrap sample) of the original dataset. However, even with different data, if a very

strong predictor (say, a specific variable like "income") dominates, then most trees will end

up splitting on that variable early in the tree. This means that although the trees are trained on

different data, they behave similarly leading to ‘high correlation’ between trees. As a result,

averaging their predictions may not reduce the variance as much as it is desired.

To fix ideas, consider the formula for the variance of the average prediction from B trees. If

the trees are not completely independent and have a correlation ρ, the variance of their average

is given by 𝑉𝑎𝑟(𝑚𝑒𝑎𝑛) = 𝜌𝜎2 +
1−𝜌

𝐵
𝜎2 . As one increases the number of trees (B), the

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 200 -

second term (variance due to randomness) shrinks, but the first term (variance due to

correlation) remains. This suggests that the overall variance reduction from bagging is limited

by the correlation between trees. Random Forests address this limitation by adding an extra

layer of randomness.

4. Random Forests Regression

Random Forests are an improvement over Bagging, especially in situations where the trees in

the bagging ensemble are highly correlated. Like bagging, they use bootstrap samples to train

each tree. But in addition, at each split in the tree, a random subset of features is selected. The

best split is then chosen only from this subset, not from all features. This forces the trees to

consider different variables and paths during training, which makes them less correlated. This

‘de-correlation’ increases the diversity of the trees, and thus boosts the effectiveness of

averaging.

A good account on Random Forests can be found in, among others, Cutler et al. (2011),

Protopapas and Rader (2025) etc. It has many real time applications, to cite one, Akselrud

(2024) has employed Random Forests for pre-season predictions of total catches with

uncertainty for California market squid (Doryteuthis opalescens), the most valuable fishery in

California.

Tuning Random Forests: Random Forests also introduce hyperparameters that can be adjusted

for better performance. These include

1. The number of predictors randomly chosen at each split: This controls how diverse the

trees will be.

2. The number of trees in the forest: More trees usually lead to more stability, but come at a

computational cost.

3. The minimum size of leaf nodes: This controls how deep each tree grows and helps avoid

redundancy or overfitting in practice.

While there are standard default values (e.g., square root of the number of predictors), it is

best to tune these parameters using cross-validation. Fortunately, Random Forests also offer

a helpful built-in validation method: Out-of-Bag (OOB) error. Since each tree is trained on

only part of the data, the unused portion (about one-third of the data) can be used to test the

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 201 -

accuracy of the tree under consideration. This allows for efficient model evaluation without

separate cross-validation sets.

Variable Importance in Random Forests: Another powerful feature of Random Forests is that

they can estimate variable importance. For each tree, the model first predicts using the out-of-

bag samples and records the accuracy. Then, it randomly shuffles the values of one feature in

the data and measures how much the accuracy drops. If the accuracy decreases significantly,

it means that feature was important for prediction. This process is repeated for each feature,

and the average drop in accuracy tells us which variables are most useful in the model.

5. Data, R code for Random Forest Regression and interpretation of results

The following discussion is partially adopted from the work by Ehrlinger (2015).

Data: Boston Housing Data <There are 506 records, hence only Preview given below>

The details about the variables in this Boston Housing data are:

Crim - Crime rate by town.

Zn - Proportion of residential land zoned for lots over 25,000 sq.ft.

indus -Proportion of non-retail business acres per town.

chas -Charles River (tract bounds river).

nox -Nitrogen oxides concentration (10 ppm).

rm -Number of rooms per dwelling.

age -Proportion of units built prior to 1940.

dis -Distances to Boston employment center.

rad -Accessibility to highways.

tax -Property-tax rate per $10,000.

ptratio -Pupil-teacher ratio by town.

black -Proportion of blacks by town.

lstat -Lower status of the population (percent).

medv -Median value of homes ($1000s).

#R code for Random Forest Regression

1. Install and Load Required Packages

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 202 -

library(MASS)

library(randomForestSRC)

library(reshape2)

library(ggplot2)

library(rpart)

library(rpart.plot)

library(caret)

2. Load and Prepare the Boston Housing Data

data(Boston, package = "MASS")

Boston$chas <- as.logical(Boston$chas)

3. Melt Data for Exploratory Visualization

dta <- melt(Boston, id.vars = c("medv", "chas"))

ggplot(dta, aes(x = medv, y = value, color = chas)) +

 geom_point(alpha = 0.4) +

 labs(y = "", x = "Median Value (medv)") +

 scale_color_brewer(palette = "Set2") +

 facet_wrap(~variable, scales = "free_y", ncol = 3)

4. Random Forest Regression Model

set.seed(123)

rfsrc_Boston <- rfsrc(medv ~ ., data = Boston, ntree = 500, importance = TRUE)

print(rfsrc_Boston)

5. Variable Importance Plot

vimp <- sort(rfsrc_Boston$importance, decreasing = TRUE)

vimp_df <- data.frame(Variable = names(vimp), Importance = vimp)

ggplot(vimp_df, aes(x = reorder(Variable, Importance), y = Importance)) +

 geom_bar(stat = "identity", fill = "darkorange") +

 coord_flip() +

 labs(title = "Variable Importance", x = "Variables", y = "Importance") +

 theme_minimal()

6. Partial Dependence Plots

plot.variable(rfsrc_Boston, xvar.names = c("lstat", "rm"),

 partial = TRUE, show.plots = TRUE)

7. Tree-like CART Model for Comparison

tree_model <- rpart(medv ~ ., data = Boston, method = "anova")

rpart.plot(tree_model, type = 2, extra = 101, fallen.leaves = TRUE,

 main = "Regression Tree for medv")

8. Predict and Evaluate the Model

predictions <- predict(rfsrc_Boston)$predicted

results <- data.frame(Actual = Boston$medv, Predicted = predictions)

rmse_val <- RMSE(predictions, Boston$medv)

r2_val <- R2(predictions, Boston$medv)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 203 -

cat("\nModel Performance:\n")

cat("RMSE:", round(rmse_val, 2), "\n")

cat("R-squared:", round(r2_val, 2), "\n")

9. Discretize medv for Confusion Matrix

Boston$medv_cat <- cut(Boston$medv,

 breaks = quantile(Boston$medv, probs = seq(0, 1, 0.25)),

 labels = c("Low", "MidLow", "MidHigh", "High"),

 include.lowest = TRUE)

results$Predicted_cat <- cut(predictions,

 breaks = quantile(Boston$medv, probs = seq(0, 1, 0.25)),

 labels = c("Low", "MidLow", "MidHigh", "High"),

 include.lowest = TRUE)

confusion <- confusionMatrix(results$Predicted_cat, Boston$medv_cat)

print(confusion)

Interpretation

The Random Forest builds many decision trees to make better predictions. Each tree is built

by choosing a random subset of the predictor variables at every decision point (called a

"split"). The tree keeps splitting the data based on which variable best separates the values

until it meets a stopping rule (like when the group is too small or the predictions are similar

enough). In regression problems (like predicting house prices – here Median value of homes),

the trees try to minimize the average squared error between the predicted and actual values.

In the end, the Random Forest makes a prediction by averaging the results from all trees. For

this Boston Housing example, the Random Forest was trained to predict medv (the median

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 204 -

value of houses) using the other 13 variables (like crime rate, number of rooms, etc.). The

forest had 1000 trees (the default) and considered five variables at each split.

The regression tree for the Boston housing dataset provides a clear and interpretable

breakdown of how different variables influence the median home value (medv). The tree

begins by splitting on the variable rm (average number of rooms per dwelling), with a

threshold of 6.9 rooms. This initial split distinguishes between houses with fewer rooms

(lower prices) and those with more rooms (higher prices), highlighting rm as a critical

determinant of home value. For homes with fewer than 6.9 rooms, further splits are made on

socioeconomic indicators such as lstat (percentage of lower status population) and crim (crime

rate), which help identify areas with depressed home values due to higher poverty and crime.

On the other side, homes with rm above 6.9 split on more refined thresholds of rm and lstat,

ultimately identifying groups of homes with very high median values, especially those with

low poverty and high room counts. The predicted values at each terminal node represent

average home prices for that subgroup, and the structure of the tree offers valuable insights

into how combinations of housing, demographic, and economic variables drive home values

in the Boston area. This tree, though simpler than a random forest, helps us understand the

key drivers and interactions in a visual, easy-to-interpret format.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 205 -

References

• Akselrud, C.I.A. (2024). Random forest regression models in ecology: Accounting for

messy biological data and producing predictions with uncertainty, Fisheries Research,

280, 107161, https://doi.org/10.1016/j.fishres.2024.107161

• Cutler, A., Cutler, D.R., Stevens, J.R. (2012). Random Forests. In: Zhang, C., Ma, Y.

(eds) Ensemble Machine Learning. Springer, New York, NY, pp 157-175.

https://doi.org/10.1007/978-1-4419-9326-7_5.

• Ehrlinger (2015). ggRandomForests: Random Forests for Regression, pages 1-30,

https://arxiv.org/pdf/1501.07196

• Protopapas, P. and Rader, K. (2025). Regression Trees, Bagging and Random Forest,

https://harvard-iacs.github.io/2018-CS109A/lectures/lecture-

16/presentation/lecture16_bagging_random_forest.pdf, accessed on 30 June, 2025.

https://doi.org/10.1016/j.fishres.2024.107161
https://doi.org/10.1007/978-1-4419-9326-7_5
https://arxiv.org/pdf/1501.07196
https://harvard-iacs.github.io/2018-CS109A/lectures/lecture-16/presentation/lecture16_bagging_random_forest.pdf
https://harvard-iacs.github.io/2018-CS109A/lectures/lecture-16/presentation/lecture16_bagging_random_forest.pdf

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 206 -

Xgboost Algorithm

Kapil Choudhary

College of Agriculture, Sumerpur (Pali)- 306902, Agriculture University, Jodhpur

Email: kapiliasri@gmail.com

1. Introduction

Time series data is a collection of observations recorded sequentially over time, typically at

consistent intervals such as hourly, daily, monthly, or annually. This form of data is central to

many real-world applications, including but not limited to financial market analysis, weather

prediction, traffic forecasting, energy consumption monitoring, and agricultural output

assessment. The temporal order and dependency of observations are crucial characteristics of

time series data, which distinguish it from other types of datasets. Time series forecasting

involves using historical data to predict future values. Accurate forecasting is vital in strategic

decision-making processes across sectors such as finance (forecasting stock prices), energy

(projecting electricity demand), agriculture (predicting crop prices), and healthcare

(forecasting disease outbreaks). It aids in planning, resource allocation, inventory management,

and risk assessment. To achieve reliable forecasts, it is essential to understand and model the

underlying patterns of time series data, such as trends (long-term increases or decreases),

seasonality (systematic calendar-related movements), cyclic behavior (longer-term fluctuations

without fixed periodicity), and irregular variations (noise). Traditional time series models such

as ARIMA, Exponential Smoothing, and SARIMA are statistical in nature and have been

widely used for decades. While these models are effective in capturing linear patterns and

seasonality, they often struggle with nonlinear relationships, complex feature interactions, and

high-dimensional data. Moreover, they require assumptions such as stationarity, which may

not hold in real-world scenarios. As a result, their applicability becomes limited when dealing

with large, noisy, and intricate datasets.

To overcome these limitations, machine learning models have been increasingly adopted for

time series forecasting. Among them, XGBoost (Extreme Gradient Boosting) has emerged as

a powerful tool. XGBoost is a highly efficient and scalable implementation of the gradient

boosting framework that builds an ensemble of decision trees sequentially to improve model

performance. Originally designed for classification and regression on tabular data, XGBoost

can be adapted for time series tasks through appropriate preprocessing techniques. Although

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 207 -

XGBoost does not inherently account for the temporal structure of data, it can effectively model

time series when transformed into a supervised learning format. This involves the creation of

lag features, rolling statistics, and calendar-based indicators. Once the time-based features are

engineered, XGBoost can learn from the transformed data and capture complex, non-linear

dependencies. It includes features like regularization to control overfitting, efficient handling

of missing data, and support for parallel computation, which make it particularly suitable for

large-scale forecasting problems. In essence, XGBoost provides a flexible and robust

alternative to traditional time series models, especially when used in hybrid frameworks or

combined with domain-specific feature engineering. Its adaptability and predictive power have

made it a popular choice in both academic research and industry applications for forecasting

tasks.

2. Gradient Boosting and the XGBoost Framework

To understand the strength of XGBoost, it is essential to first grasp the underlying principles

of gradient boosting. Gradient boosting is an ensemble learning technique that constructs a

strong predictive model by combining the outputs of several weaker models, typically decision

trees. The main idea is to build the model in a sequential manner, where each new tree corrects

the errors made by the previous ensemble. The model improves over iterations by minimizing

a specified loss function using a gradient descent approach.

XGBoost enhances this process by incorporating several advanced features that make it faster,

more accurate, and more scalable. It introduces regularization terms (L1 and L2) in the

objective function to prevent overfitting, which is particularly beneficial when dealing with

noisy or high-dimensional datasets. XGBoost also employs an efficient algorithm known as

"approximate tree learning," which allows for faster computation and memory optimization.

Additionally, it supports parallel and distributed computing, making it highly efficient for large

datasets.

Another key innovation of XGBoost is its sparsity-aware algorithm, which handles missing

values effectively during model training. This is crucial in real-world scenarios where time

series data often contains gaps or missing records. Furthermore, XGBoost offers built-in cross-

validation functionality, early stopping criteria, and tree pruning mechanisms, all of which

contribute to improved model robustness and generalization performance. In the context of

time series forecasting, these features allow XGBoost to adapt to the complexity and dynamics

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 208 -

of temporal data, even though it is not inherently time-aware. By using lagged inputs and

engineered time features, the model can learn from historical patterns and generalize them to

future observations. This makes XGBoost not just a viable alternative, but often a superior

choice compared to classical time series models, particularly when non-linearity, high variance,

and multiple influencing variables are involved.

Ultimately, XGBoost serves as a bridge between traditional statistical methods and modern

machine learning approaches. Its flexible architecture allows integration with other techniques

such as signal decomposition, neural networks, or statistical preprocessing methods, enabling

the development of hybrid models that leverage the strengths of multiple forecasting

paradigms. Following are the mathematical formulation of the XGBoost model for time series

forecasting:.

1. Feature Construction

Let the univariate time series be represented as 𝑌𝑡, 𝑡 = 1,2,3…𝑇 , where T is the total number

of observations. The objective is to learn a function 𝑓 that maps past observations to a future

value: �̂�𝑡 = 𝑓(𝑋𝑡), where 𝑋𝑡 is a feature vector derived from past observations.

To frame the time series forecasting as a supervised learning problem, we construct feature

vectors using lagged values: 𝑋𝑡 = [𝑌𝑡−1, 𝑌𝑡−2, 𝑌𝑡−3… , 𝑌𝑡−𝑃]

This results in a training dataset: (𝑋𝑡, 𝑌𝑡) 𝑓𝑜𝑟 𝑡 = 𝑝 + 1, … , 𝑇

2. XG boost Model

XGBoost models the prediction as an ensemble of K regression trees:

�̂�𝑡 =∑𝑓𝑘(𝑋𝑡)

𝐾

𝑘=1

Where 𝑓𝑘 ∈ 𝓕 Here, 𝓕 is the space of regression trees.

3. Objective Function

The regularized objective function is defined as: 𝐿 = ∑ 𝑙(𝑇
𝑡=𝑝+1 𝑌𝑡, �̂�𝑡) + ∑ 𝜑𝐾

𝑘=1 (𝑓𝑘)

Where 𝑙 is typically the squared loss and the regularization term 𝜑

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 209 -

4. Addative Training

XGBoost builds the model in an additive manner. At step m: �̂�𝑡(𝑚) = �̂�𝑡(𝑚 − 1) + 𝑓𝑚(𝑋𝑡)

5. Forecasting

Once trained, the model forecasts the value at horizon h as:

�̂�𝑇+ℎ = 𝑓(𝑋𝑇+ℎ)

6. Evaluation

Standard error metrics used for evaluating the model include:

RMSE= √
1

𝑛
∑ (𝑦(𝑡) − �̂�(𝑡))2𝑛
𝑡=1 ;

 MAPE =
1

𝑛
∑ |

𝑦(𝑡)−�̂�(𝑡)

𝑦(𝑡)
|𝑛

𝑡=1

 MAE =
1

𝑛
∑ |𝑦(𝑡) − �̂�(𝑡)|𝑛
𝑡=1 ;

where 𝑦(𝑡) and �̂�(𝑡) stand for the actual values and predicted values

XG boost python code

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import mean_squared_error, mean_absolute_error

from sklearn.model_selection import TimeSeriesSplit

import xgboost as xgb

import warnings

warnings.filterwarnings('ignore')

Set style for plots

plt.style.use('seaborn-v0_8')

sns.set_palette("husl")

def install_packages():

 """Install required packages if not available"""

 import subprocess

 import sys

 packages = ['pandas', 'numpy', 'matplotlib', 'seaborn', 'scikit-learn', 'xgboost']

 for package in packages:

 try:

 __import__(package)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 210 -

 except ImportError:

 print(f"Installing {package}...")

 subprocess.check_call([sys.executable, "-m", "pip", "install", package])

Uncomment the line below if you need to install packages

install_packages()

def read_data_from_clipboard():

 """Read data from clipboard"""

 try:

 # Try to read from clipboard

 df = pd.read_clipboard(sep='\t')

 print("Data successfully read from clipboard!")

 print(f"Data shape: {df.shape}")

 print("\nFirst few rows:")

 print(df.head())

 return df

 except Exception as e:

 print(f"Error reading from clipboard: {e}")

 print("Please make sure you have copied tab-separated data to clipboard")

 return None

def create_lag_features(data, lags):

 """Create lagged features for time series"""

 df = pd.DataFrame()

 for lag in lags:

 df[f'lag_{lag}'] = data.shift(lag)

 return df

def create_time_features(n):

 """Create time-based features"""

 time_index = np.arange(1, n + 1)

 df = pd.DataFrame({

 'trend': time_index,

 'trend_sq': time_index ** 2,

 'sin_annual': np.sin(2 * np.pi * time_index / 12), # Assuming monthly data

 'cos_annual': np.cos(2 * np.pi * time_index / 12),

 'sin_quarterly': np.sin(2 * np.pi * time_index / 4),

 'cos_quarterly': np.cos(2 * np.pi * time_index / 4),

 'sin_weekly': np.sin(2 * np.pi * time_index / 7), # Weekly pattern

 'cos_weekly': np.cos(2 * np.pi * time_index / 7)

 })

 return df

def calculate_metrics(y_true, y_pred):

 """Calculate evaluation metrics"""

 rmse = np.sqrt(mean_squared_error(y_true, y_pred))

 mae = mean_absolute_error(y_true, y_pred)

 mape = np.mean(np.abs((y_true - y_pred) / y_true)) * 100

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 211 -

 return rmse, mae, mape

def plot_results(ts_data, test_predictions, forecasts, split_point):

 """Plot actual vs predicted values and forecasts"""

 plt.figure(figsize=(15, 8))

 # Plot last 50 points or all if less

 n_plot = min(50, len(ts_data))

 start_idx = len(ts_data) - n_plot

 # Actual data

 plt.plot(range(start_idx, len(ts_data)),

 ts_data[start_idx:],

 label='Actual', color='blue', linewidth=2)

 # Test predictions

 if len(test_predictions) > 0:

 test_start = max(split_point, start_idx)

 test_end = min(split_point + len(test_predictions), len(ts_data))

 test_range = range(test_start, test_end)

 test_pred_slice = test_predictions[:len(test_range)]

 plt.plot(test_range, test_pred_slice,

 label='Test Predictions', color='red', linewidth=2, alpha=0.8)

 # Forecasts

 forecast_range = range(len(ts_data), len(ts_data) + len(forecasts))

 plt.plot(forecast_range, forecasts,

 label='Forecast', color='green', linewidth=2, marker='o')

 plt.title('XGBoost Time Series Forecasting Results', fontsize=16, fontweight='bold')

 plt.xlabel('Time Index', fontsize=12)

 plt.ylabel('Value', fontsize=12)

 plt.legend(fontsize=12)

 plt.grid(True, alpha=0.3)

 plt.tight_layout()

 plt.show()

 def plot_feature_importance(model, feature_names, top_n=15):

 """Plot feature importance"""

 importance_dict = model.get_booster().get_score(importance_type='weight')

 # Convert to DataFrame and sort

 importance_df = pd.DataFrame(list(importance_dict.items()),

 columns=['feature', 'importance'])

 importance_df = importance_df.sort_values('importance', ascending=True).tail(top_n)

 plt.figure(figsize=(10, 8))

 plt.barh(range(len(importance_df)), importance_df['importance'])

 plt.yticks(range(len(importance_df)), importance_df['feature'])

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 212 -

 plt.xlabel('Feature Importance', fontsize=12)

 plt.title(f'Top {top_n} Feature Importance', fontsize=14, fontweight='bold')

 plt.tight_layout()

 plt.show()

 return importance_df

def forecast_multi_step(model, last_values, time_features_future, n_ahead, max_lags):

 """Generate multi-step ahead forecasts"""

 forecasts = []

 current_lags = list(last_values[-max_lags:])

 for i in range(n_ahead):

 # Create feature vector

 lag_features = current_lags[::-1] # Reverse for most recent first

 time_features = time_features_future.iloc[i].values

 # Combine features

 features = np.array(lag_features + list(time_features)).reshape(1, -1)

 # Make prediction

 pred = model.predict(features)[0]

 forecasts.append(pred)

 # Update lags for next iteration

 current_lags = current_lags[1:] + [pred]

 return np.array(forecasts)

def main():

 """Main function to run XGBoost time series forecasting"""

 print("=== XGBoost Univariate Time Series Forecasting ===\n")

 # Read data from clipboard

 df = read_data_from_clipboard()

 if df is None:

 return

 # Get the first numeric column

 numeric_columns = df.select_dtypes(include=[np.number]).columns

 if len(numeric_columns) == 0:

 print("No numeric columns found in the data!")

 return

 ts_column = numeric_columns[0]

 ts_data = df[ts_column].values

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 213 -

 print(f"\nUsing column: {ts_column}")

 print(f"Time series length: {len(ts_data)}")

 print(f"Data range: {ts_data.min():.4f} to {ts_data.max():.4f}")

 # Parameters

 max_lags = 12

 forecast_horizon = 6

 test_size = 0.2

 # Create features

 print("\nCreating features...")

 # Lag features

 lag_features = create_lag_features(ts_data, range(1, max_lags + 1))

 # Time features

 time_features = create_time_features(len(ts_data))

 # Combine features

 all_features = pd.concat([lag_features, time_features], axis=1)

 # Create target variable (next period value)

 target = pd.Series(ts_data).shift(-1)

 # Remove rows with NaN values

 valid_idx = ~(all_features.isnull().any(axis=1) | target.isnull())

 X = all_features[valid_idx]

 y = target[valid_idx]

 print(f"Training samples after removing NAs: {len(X)}")

 # Split data

 split_point = int(len(X) * (1 - test_size))

 X_train, X_test = X[:split_point], X[split_point:]

 y_train, y_test = y[:split_point], y[split_point:]

 print(f"Training samples: {len(X_train)}")

 print(f"Test samples: {len(X_test)}")

 # XGBoost parameters

 params = {

 'objective': 'reg:squarederror',

 'eval_metric': 'rmse',

 'eta': 0.1,

 'max_depth': 6,

 'min_child_weight': 1,

 'subsample': 0.8,

 'colsample_bytree': 0.8,

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 214 -

 'gamma': 0,

 'alpha': 0,

 'lambda': 1,

 'random_state': 42,

 'verbosity': 0

 }

 # Create DMatrix objects

 dtrain = xgb.DMatrix(X_train, label=y_train)

 dtest = xgb.DMatrix(X_test, label=y_test)

 # Train with early stopping

 print("\nTraining XGBoost model...")

 model = xgb.train(

 params=params,

 dtrain=dtrain,

 num_boost_round=1000,

 evals=[(dtrain, 'train'), (dtest, 'test')],

 early_stopping_rounds=50,

 verbose_eval=False

)

 print(f"Optimal rounds: {model.best_iteration}")

 # Make predictions on test set

 test_predictions = model.predict(dtest)

 # Calculate metrics

 rmse_test, mae_test, mape_test = calculate_metrics(y_test, test_predictions)

 print(f"\n=== Test Set Performance ===")

 print(f"RMSE: {rmse_test:.4f}")

 print(f"MAE: {mae_test:.4f}")

 print(f"MAPE: {mape_test:.2f}%")

 # Feature importance

 print(f"\n=== Feature Importance ===")

 importance_df = plot_feature_importance(model, X.columns)

 print("\nTop 10 Features:")

 print(importance_df.tail(10))

 # Generate forecasts

 print(f"\n=== Generating Forecasts ===")

 # Create future time features

 future_time_features = create_time_features(len(ts_data) + forecast_horizon)

 future_time_features = future_time_features.iloc[len(ts_data):]

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 215 -

 # Generate forecasts

 forecasts = forecast_multi_step(

 model=model,

 last_values=ts_data,

 time_features_future=future_time_features,

 n_ahead=forecast_horizon,

 max_lags=max_lags

)

 print(f"Forecasts for next {forecast_horizon} periods:")

 for i, forecast in enumerate(forecasts, 1):

 print(f"Period {i}: {forecast:.4f}")

 # Visualization

 print(f"\n=== Creating Visualizations ===")

 plot_results(ts_data, test_predictions, forecasts, split_point)

 # Summary

 print(f"\n=== MODEL SUMMARY ===")

 print(f"Model type: XGBoost")

 print(f"Training samples: {len(X_train)}")

 print(f"Test samples: {len(X_test)}")

 print(f"Number of features: {X.shape[1]}")

 print(f"Optimal boosting rounds: {model.best_iteration}")

 print(f"Test RMSE: {rmse_test:.4f}")

 print(f"Forecast horizon: {forecast_horizon}")

 # Return results

 results = {

 'model': model,

 'forecasts': forecasts,

 'test_rmse': rmse_test,

 'test_mae': mae_test,

 'test_mape': mape_test,

 'feature_importance': importance_df,

 'X_train': X_train,

 'X_test': X_test,

 'y_train': y_train,

 'y_test': y_test,

 'test_predictions': test_predictions

 }

 print(f"\nForecasting complete! Results stored in 'results' dictionary.")

 return results

Run the main function

if __name__ == "__main__":

 results = main()

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 216 -

References

Semmelmann, L., Henni, S., & Weinhardt, C. (2022). Load forecasting for energy

communities: a novel LSTM-XGBoost hybrid model based on smart meter data. Energy

Informatics, 5(Suppl 1), 24.

Xiong, G., Zhang, J., Fu, X., Chen, J., & Mohamed, A. W. (2024). Seasonal short-term

photovoltaic power prediction based on GSK–BiGRU–XGboost considering correlation of

meteorological factors. Journal of Big Data, 11(1), 164.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 217 -

Deep Learning for Abiotic Stress Management in Agriculture:

A Focus On RNN, GRU, CNN, LSTM And Transformers
G. Avinash

Chairman & CEO, Avyagraha Research and Analytics LLP, Ballari, Karnataka – 583132

Email: avinash143stat@gmail.com

Abstract

This chapter explores the application of deep learning (DL) models namely Recurrent Neural

Networks (RNN), Gated Recurrent Units (GRU), Convolutional Neural Networks (CNN),

Long Short-Term Memory (LSTM), and Transformers in the context of abiotic stress

management in agriculture. Abiotic stress factors such as drought, temperature extremes, and

erratic rainfall pose significant threats to crop productivity and food security. Traditional

statistical and machine learning methods often fall short in capturing complex temporal

patterns and dependencies inherent in environmental and crop-related data. Deep learning

models, with their capacity to learn non-linear, high-dimensional, and time-dependent features,

offer robust alternatives for forecasting, classification, and decision support. The chapter

introduces each architecture with relevant mathematical foundations and showcases their

comparative strengths in handling time series data, such as rainfall and crop price forecasting.

This comprehensive overview emphasizes the practical potential of DL models in enhancing

resilience and precision in agricultural systems under changing climatic conditions.

Introduction & Methodology

Time series data in agriculture such as rainfall variability, temperature fluctuations, soil

moisture dynamics, and crop phenology are critical for understanding and managing abiotic

stresses like drought, heatwaves, salinity, and waterlogging. Traditional time series forecasting

techniques such as Holt–Winters, Kalman Filters, ARIMA and SARIMA (Box et al., 1995) are

commonly employed for such tasks. However, their reliance on assumptions like linearity,

stationarity, and predefined lag structures limits their effectiveness in modeling the nonlinear,

non-stationary, and complex interactions inherent in agrometeorological data. Statistical

enhancements like ARCH/GARCH, TAR, and Smooth Transition Models offer some

improvements but often involve cumbersome tuning and limited interpretability (Engle, 1982;

Bollerslev, 1986; Tong & Lim, 2009).

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 218 -

In response to these challenges, machine learning models such as Support Vector Regression

(SVR), Random Forests, and Gradient Boosting Machines (GBM) have been applied to rainfall

prediction, yield forecasting, and early stress detection. These models are more flexible in

capturing nonlinear patterns but still lack an innate capability to learn temporal dependencies

from sequential data.

This is where Deep Learning (DL) transforms the game. By enabling models to learn patterns

directly from raw sequences without manual feature engineering DL opens up new possibilities

for accurate and scalable prediction in agriculture. Let’s take a deep dive into Deep Learning,

starting with Recurrent Neural Networks (RNNs) and their powerful variants!

Note: (Abbreviations and Hyperparameters details are listed at the end of the chapter in the

supplementary section)

Understanding Sequential Networks

1. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks designed to model

sequential data, where the current prediction depends not only on the current input but also

on past inputs. This temporal dependency makes RNNs uniquely suitable for tasks like

weather forecasting, Time Series Forecasting, NDVI time series modeling, or crop stress

prediction, where the sequence of past conditions (Price Series, temperature, rainfall, etc.)

directly influences future outcomes.

RNNs achieve this by maintaining a hidden state that gets updated at each time step as new

data arrives. This allows the model to form a form of internal memory, capturing patterns

over time.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 219 -

Figure 1: Recurrent Neural Network have loops (Ref: Olah, C. (2015))

In the above diagram, a chunk of neural network, 𝐴, looks at some input 𝑥𝑡 and outputs a value

ℎ𝑡. A loop allows information to be passed from one step of the network to the next.

These loops make recurrent neural networks seem kind of mysterious. However, if you think a bit

more, it turns out that they aren’t all that different than a normal neural network. A recurrent neural

network can be thought of as multiple copies of the same network, each passing a message to a

successor. Consider what happens if we unroll the loop:

Figure 2: An unrolled recurrent neural network (Ref: Olah, C. (2015))

This chain-like nature reveals that recurrent neural networks are intimately related to sequences

and lists. They’re the natural architecture of neural network to use for such data.

And they certainly are used! In the last few years, there have been incredible success applying

RNNs to a variety of problems: speech recognition, language modeling, translation, image

captioning… The list goes on.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 220 -

Figure3: Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input

vectors are in red, output vectors are in blue and green vectors hold the RNN's state (more on

this soon). From left to right: (1) Vanilla mode of processing without RNN, from fixed-sized

input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g. image

captioning takes an image and outputs a sentence of words). (3) Sequence input (e.g. sentiment

analysis where a given sentence is classified as expressing positive or negative sentiment). (4)

Sequence input and sequence output (e.g. Machine Translation: an RNN reads a sentence in

English and then outputs a sentence in French). (5) Synced sequence input and output (e.g.

video classification where we wish to label each frame of the video). Notice that in every case

are no pre-specified constraints on the lengths sequences because the recurrent transformation

(green) is fixed and can be applied as many times as we like. (Ref: Karpathy 2015)

1.1.Core Mechanism

Training RNNs involves backpropagation through time (BPTT), adjusting weights to refine

prediction accuracy. Despite exhibiting various architectures, such as, one-to-one, one-to-

many, many-to-many and many-to-one. RNNs encounter challenges like exploding and

vanishing gradients, impacting stability and learning efficiency. Sequential data processing

also constrains scalability, potentially leading to slow training times, rendering them less

suitable for certain sequential tasks.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 221 -

Figure 4: RNN architecture (Avinash et al., 2024)

Hidden State Update: The workflow involves sequential input processing and hidden state

update. At each time step 𝑡, the hidden state ℎ𝑡 is computed using the input 𝑥𝑡 and the previous

hidden state ℎ𝑡−1:

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖ℎ. 𝑥𝑡 +𝑊ℎℎ. ℎ𝑡−1 + 𝑏ℎ) … [1]

Output Prediction: The output �̂�𝑡 is predicted based on the current hidden state:

�̂�𝑡 = 𝑊ℎ𝑦. ℎ𝑡 + 𝑏𝑦 … [2]

Loss Function (MSE): During training, the loss 𝐿𝑡:

𝐿𝑡 =
1

𝑡
 ∑(�̂�𝑡 − 𝑦𝑡)

2

𝑇

𝑡=1

 … [3]

Gradient Computation: These are computed with respect to the model parameters for weight

updates:

𝜕𝐿𝑡
𝜕𝑊ℎ𝑦

,
𝜕𝐿𝑡
𝜕ℎ𝑡

,
𝜕𝐿𝑡
𝜕𝑊𝑖ℎ

,
𝜕𝐿𝑡
𝜕𝑊ℎℎ

 … [4]

Weight Update (Gradient Descent): These gradients are used in the weight update through

gradient descent as depicted in Eq. (5):

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝜂.
𝜕𝐿𝑡
𝜕𝜃𝑜𝑙𝑑

 … [5]

Where:

• 𝜂: learning rate

• 𝜃 ∈{𝑊𝑖ℎ, 𝑊ℎ𝑦,𝑊ℎℎ, 𝑏ℎ, 𝑏𝑦}

Here, 𝑊𝑖ℎ , 𝑊ℎℎ , 𝑊ℎ𝑦 are the weight matrices, 𝑏ℎ , 𝑏𝑦 are the biases, the activation function

used is typically 𝒕𝒂𝒏𝒉, which helps bound the hidden state values. However, due to issues like

long-term dependency degradation, newer architectures such as Long Short-Term Memory

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 222 -

(LSTM) and Gated Recurrent Unit (GRU) have been developed to enhance performance on

sequential learning tasks.

2. Long Short-Term Memory (LSTM)

In 1997, Hochreiter (Hochreiter, 1997) recognized that traditional RNNs were unable to retain

important historical information for extended periods of time. To address this issue, they

developed the LSTM model, which introduced gate mechanisms to the RNN framework.

LSTMs utilize three gate structures, namely the forget, input and output gates, which are

implemented as sigmoid layers. These gates receive inputs from both the previous network

output (ℎ𝑡−1) and the current input (𝑥𝑡) and are designed to decide whether to retain or delete

the information processed by the previous cell state (𝐶𝑡−1).

The forget gate plays a critical role in the LSTM architecture, as it determines whether

previously processed information is necessary for further analysis. The output of this

processing gate is represented as 𝑓𝑡 . By incorporating these gate mechanisms, LSTMs can

process and predict useful information with extended time intervals and delays in TS.

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) … [6]

The forget gate in the LSTM model plays a crucial role in determining the relevance of

previously processed information. Its output, represented as 𝑓𝑡 , determines whether

information should be retained or discarded. A value of 0 indicates that the information should

be completely discarded, while a value of 1 indicates that it should be retained entirely.

The forget gate utilizes a weight matrix (𝑊𝑓), a sigmoid function 𝜎 and a bias term (𝑏𝑓) to

determine the importance of the previous cell state (𝐶𝑡−1) in the current computation.

In addition to the forget gate, the LSTM model also employs an input gate, which determines

which values require updating. This gate combines the previous network output (ℎ𝑡−1) and

current input (𝑥𝑡) using a weight matrix (𝑊𝑖), sigmoid function (𝜎) and bias term (𝑏𝑖) to

produce a new candidate value that can be added to the current cell state (𝐶𝑡).

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) … [7]

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 223 -

The input gate of the LSTM model receives a bias term (𝑏𝑖) in addition to the input weighted

by the weight matrix (𝑊𝑖). This input is processed using the sigmoid function (𝜎) to determine

which information needs to be updated before being transferred to the cell state (𝐶𝑡).

The output of the input gate (𝑖𝑡), takes on values between 0 and 1, inclusive, indicating the

degree to which information needs to be updated in the current computation. The use of a

sigmoid function allows for this output to be interpreted as a probability and ensures that the

input gate's influence on the current computation remains bounded.

𝐶�̂� = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) … [8]

Figure 5: LSTM architecture (Avinash et al., 2024)

Equation (8) represents the updated cell state value, denoted as 𝐶�̂�, which is computed by taking

into account the current input and hidden node (ℎ𝑡−1), which are weighted with 𝑊𝑐 and added

bias (𝑏𝑐), respectively and then passed through the hyperbolic tangent (𝑡𝑎𝑛ℎ) function that

yields a value ranging from –1 to +1. The forget gate's non-zero output (𝑓𝑡) indicates that it

contains useful information from the previous cell state (𝐶𝑡−1), which is multiplied with (𝐶𝑡−1)

to forget old and irrelevant features. The output from the input gate (𝑖𝑡) is then multiplied with

the new candidate status (𝐶�̂�) to incorporate additional information and refine the updated

(𝐶𝑡).

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̂� … [9]

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 224 -

The current network module is determined based on the current cell state and the output gate

decides which parts of the cell state should be used as output. The output gate utilizes a

sigmoidal function to determine which information should be kept or discarded. The previous

cryptic output and the current input are multiplied with the weight matrix (𝑊𝑜) and added with

the bias (𝑏𝑜) to generate the input to the sigmoid function. The candidate value of the current

output (ℎ𝑡) is computed by taking the hyperbolic tangent (𝑡𝑎𝑛ℎ) of the current state (𝐶𝑡),

which is then multiplied with the output gate value (𝑜𝑡) to produce the final output value.

𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) … [10]

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) … [11]

The fully connected layer of the LSTM model employs the Rectified Linear Unit (ReLU) as its

activation function. To fine-tune the performance of the model, the mean square error (MSE)

is utilized as the loss function.

3. Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU), introduced by Chung et al. (2014), is a streamlined and

computationally efficient alternative to the Long Short-Term Memory (LSTM) network.

Unlike LSTM, GRU utilizes a single hidden state by merging the cell state and hidden state,

and it replaces the traditional three gates (input, forget, output) with only two: the update gate

and the reset gate. This reduction in complexity leads to fewer trainable parameters, making

GRUs faster and more cost-effective, particularly beneficial for time series forecasting

applications.

GRU layers leverage the fact that recent events are more informative for predicting the future

than distant past events. By remembering recent past information more efficiently than older

information, GRU confirms the present task. The reset gate in GRU layers, which is composed

of the reset and hidden states, determines the extent of previous information to forget, while

the update gate remembers the useful information for predicting the present. The update gate

describes how much of the GRU unit or cell will be updated.

𝑍𝑡(𝑈𝑝𝑑𝑎𝑡𝑒 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑧. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) … [11]

𝑅𝑡(𝑅𝑒𝑠𝑒𝑡 𝐺𝑎𝑡𝑒) = 𝜎(𝑊𝑅 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑅) … [12]

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 225 -

Figure 6: GRU architecture

The candidate activation in the GRU layers is computed using the hyperbolic tangent (𝑡𝑎𝑛ℎ)

function of the reset gate, as represented in equation (13). This function is used to regulate the

amount of information that needs to be added to the cell state based on the reset gate's decision

of which previous information to forget. The output of the 𝑡𝑎𝑛ℎ function ranges between -1

and 1, which allows the GRU to adaptively control the flow of information and maintain the

relevant information while discarding the irrelevant one.

ℎ�̃� = 𝑡𝑎𝑛ℎ(𝑊. [𝑅𝑡 . ℎ𝑡−1, 𝑥𝑡)] + 𝑏) … [13]

hidden state of the GRU layer is determined by the input and the previous hidden state.

ℎ𝑡 = (1 − 𝑍𝑡) ∗ ℎ𝑡−1 + 𝑍𝑡 ∗ ℎ�̃�) … [14]

The update and reset gates, controlled by sigmoid activation function, are used to manipulate

the recurrent connections and the inputs. The new member gate is obtained through the

hyperbolic tangent function applied to the reset gate. Weight matrices, represented by 𝑊𝑍, 𝑊𝑅

and 𝑊, along with the bias terms 𝑏𝑍 and 𝑏𝑅 are used to control the input values in the update

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 226 -

and reset gates (Fig.6). The final hidden state is calculated by combining the previous hidden

state and the new member gate with the update gate.

Due to their ability to balance memory efficiency with computational simplicity, GRUs have

become a standard architecture for modeling agricultural time series such as rainfall

forecasting, NDVI trend analysis, and drought prediction etc.

4. Transformer

 The Transformer model is an encoder/decoder-based architecture that is utilized for machine

translation tasks in which it translates one sequence of language to another proposed by

(Vaswani et al., 2017). Now it is widely used in time series, vision, genomics, and climate

modeling. Through the use of self-attention mechanisms, the Transformer model is able to

effectively evaluate the significance of different elements within the input data. This capability

enhances the accuracy of the model's predictions, making it highly efficient for various tasks.

Moreover, Transformer is equipped with an attention mechanism that facilitates faster learning

compared to other DL architectures.

4.1.The Architecture of Transformer:

The Transformer model is a type of neural sequence transformation model that utilizes an

encoder-decoder structure. The encoding process involves transforming an input sequence

represented symbolically as (𝑥1, … , 𝑥𝑛) into a continuous representation 𝑧 = (𝑧1, … , 𝑧𝑛). The

decoder then generates the output sequence (𝑦1, … , 𝑦𝑚) symbol by symbol using z as input.

The model is autoregressive, meaning it uses newly generated symbols based on previously

created ones at each stage. The encoder and decoder layers are stacked and interconnected for

self-awareness, with the encoder depicted in the left half and the decoder in the right half of

Figure 7.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 227 -

Figure 7: Transformer architecture (Nayak et al., 2024b)

4.1.1. Input Embedding and Positional Encoding: The purpose of the input embedding is to

transform each item in the input sequence into a high dimensional vector space. This

transformation allows the model to capture more complex features of each of them.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 228 -

 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋𝑖) = 𝑋𝑖𝐸 … [15]

where,

𝑋𝑖: Represents the 𝑖𝑡ℎ item in the input sequence

𝐸: The embedding matrix, typically learned during training

For TS, each 𝑋𝑖 could represent a point in time or a set of features at that time point and the

embedding layer captures temporal features in a higher dimensional space.

Since the Transformer model lacks any inherent sense of sequence order (due to the absence

of recurrent structures), positional encodings are added to give the model information about

the position of each item in the sequence.

 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 (𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

100002𝑖 𝑑⁄
) … [16]

 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 (𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

100002𝑖 𝑑⁄
) … [17]

where,

𝑝𝑜𝑠: The position of the item in the sequence

𝑖: The dimension index of the positional encoding

𝑑: The dimensionality of the embeddings

The positional encoding for each dimension is calculated using sinusoidal functions, with the

sine function applied to even indices and the cosine function to odd indices.

These equations generate a unique positional encoding for each position in the sequence. The

use of sinusoidal functions helps the model to easily learn to attend by relative positions. The

positional encodings are added to the embedding vectors, ensuring that each position in the

sequence is distinguishable and the sequential nature of the data is preserved.

 𝑋′ = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋) + 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 … [18]

This combination of embeddings and positional encodings forms the initial representation of

the input data that is fed into the subsequent layers of the Transformer model.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 229 -

4.1.2. The Encoder Block:

The encoder module is made up of 𝑁 = 6 encoder layers that are stacked on top of each other.

Each encoder layer comprises of two sublayers - a multi-head self-attention layer and a

feedforward layer, which are connected by a residual link and a normalization layer. The

residual connection is a common technique used in deep neural network training to improve

learning and stability. Additionally, layer normalization is frequently used in neural networks

for analysing sequential data and to aid in training convergence. The feedforward layer consists

of two linear layers with ReLU activation functions. The output of one encoder block becomes

the input to the next encoder block. To form the input for the initial encoder block, the word

embeddings and position-encoding vectors are added together (Ahmed et al., 2023). In order

to facilitate the residual connections, both the embedding layers and the sub-layers of the model

produce outputs with a dimension of 𝑑𝑚𝑜𝑑𝑒𝑙 = 512.

4.1.3. The Decoder Block:

The decoder component is comprised of 𝑁 = 6 identical layers of stacked decoders, each of

which contains the same layers and operations as its corresponding encoder block. However,

unlike the encoder, the decoder receives two inputs: one from the previous decoder and one

from the latest encoder. The decoder consists of three sublayers: (1) multi-headed self-

attention, (2) encoder/decoder attention layer and (3) feedforward layer, along with residual

connections and layer normalization operations. The final output of the encoder is used to

create a set of key-value vectors in the attention layer of the encoder/decoder. The query vector

is generated using the output of the preceding multi-head self-attention layer before the

encoder/decoder layer.

4.2.Self – Attention:

The primary distinction between the attention mechanism and conventional RNN or LSTM

models lies in the attention mechanism's ability to focus directly on specific segments of a

sequence rather than treating them uniformly based on their order. This unique characteristic

enables the model to capture information from early positions in the sequence, enhancing its

comprehension of the overall context.

The Transformer architecture utilizes dot products to establish connections between various

input segments, with location information added to those segments. A single sequence of n

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 230 -

words or data points {𝑥𝑖}𝑖=1
𝑛 , where 𝑥 ∈ 𝑅𝑑 is represented. The index i corresponds to the

position of the vector 𝑥𝑖, indicating the position of the word in the original sentence or phrase.

The self-attention mechanism involves computing a weighted dot product between these input

vectors 𝑥𝑖 . The self-attention process has two steps. Firstly, normalized dot products are

calculated between each input vector in the given input sequence. The normalization is done

using the softmax operator, which scales the set of numbers to ensure that they add up to 1.

The resulting normalized correlations are then calculated between a single input segment 𝑥𝑖

and all other segments 𝑗 = 1,… , 𝑛

𝑤𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖
𝑇𝑥𝑗) =

𝑒𝑥𝑖
𝑇𝑥𝑗

∑ 𝑒𝑥𝑖
𝑇𝑥𝑗

𝑗

 … [19]

where, ∑ 𝑤𝑖𝑗 = 1
𝑛
𝑗=1 and 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

In the second step, for a specific input segment 𝑥𝑖 a new representation 𝑧𝑖 is obtained by

computing a weighted sum of all input segments {𝑥𝑖}𝑗=1
𝑛 .

𝑧𝑖 =∑𝑤𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 , ∀ 1 ≤ 𝑖 ≤ 𝑛 … [20]

It is important to note that the weights 𝑤𝑖𝑗 for any input segment 𝑥𝑖 sum up to 1. Consequently,

the resulting representation vector 𝑧𝑖 is similar to the input vector 𝑥𝑗 that has the highest

attention weight 𝑤𝑖𝑗 . The maximum attention weight is determined by the maximum

correlation value obtained by the normalized inner product between 𝑥𝑖 and 𝑥𝑗 . It is worth

mentioning that the position of 𝑧𝑖 in the sequence is the same as that of 𝑥𝑖 . The process

continues for the subsequent output vector 𝑧𝑖 + 1 and a new set of weights corresponding

to𝑥𝑖 + 1 is computed and utilized.

4.2.1. Linearly Weighting Input Using Query, Key and Value:

To perform self-attention in Transformers, the model first creates three vectors (query q, key k

and value v) from the input sequence {𝑥𝑖}𝑖=1
𝑛 . These vectors are obtained by linearly combining

the input features and they have different sizes (𝒒 ∈ ℝ𝑠1, 𝒌 ∈ ℝ𝑠1 and 𝒗 ∈ ℝ𝑠).

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 231 -

After applying linear transformations to the input sequence {𝑥𝑖}𝑖=1
𝑛 , the Transformer generates

three vectors (query, key and value), each with a size of 𝑠1 = 𝑠 = 𝑑. The input sequence has n

elements, which means that the Transformer produces n query vectors, n key vectors and n

value vectors (Ahmed et al., 2023).

To obtain the query 𝑞𝑖, key 𝑘𝑖 and value 𝑣𝑖 vectors from the input 𝑥𝑖, the Transformer applies

linear transformations to the input 𝑥𝑖 using three sets of learnable weights:

𝑞𝑖 = 𝑊𝑞𝑥𝑖, 𝑘𝑖 = 𝑊𝑘𝑥𝑖 and 𝑣𝑖 = 𝑊𝑣𝑥𝑖 … [21]

where 𝑊𝑞 and 𝑊𝑘 ∈ ℝ
𝑠1×𝑑 , 𝑊𝑣 ∈ ℝ

𝑠×𝑑, depict learnable weight matrices. The output vectors

{𝑧𝑖}𝑖=1
𝑛 are given by,

𝑧𝑖 =∑𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞𝑖
𝑇𝑘𝑗)𝑣𝑗

𝑗

 … [22]

In the self-attention mechanism of Transformers, the relevance of a value vector 𝑣𝑖 to a query

vector 𝑞𝑖 is determined by its correlation with a key vector 𝑘𝑗 at a different location 𝑗. The

strength of this correlation is reflected in the dot product of 𝑞𝑖 and 𝑘𝑗, which tends to increase

with the sizes of the corresponding vectors. However, since the softmax function used to

calculate attention weights is sensitive to large values, the dot product is scaled down by the

square root of the dimension 𝑑𝑞 = 64. of the query and key vectors to avoid instability in the

attention weights.

𝑧𝑖 =∑𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑞𝑖
𝑇𝑘𝑗

√𝑑𝑞
)𝑣𝑗

𝑗

 … [23]

When represented in matrix form, the self-attention operation in Transformers can be expressed

as follows:

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 … [24]

where 𝑄 and 𝐾 ∈ ℝ𝑠1×𝑛 and 𝑉 ∈ ℝ𝑠×𝑛, 𝑍 ∈ ℝ𝑠×𝑛 and 𝑇 depicts the transpose mechanism.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 232 -

4.3.Multi-Head Self-Attention

The input data 𝑋 in Transformers may contain correlations that can be leveraged at multiple

layers for effective learning. To achieve this, multiple self-attention heads can be used in

parallel on the same input, each employing unique weight matrices 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣, to extract

distinct correlation values between the input data. In Transformers, each self-attention head is

constructed using a unique set of weight matrices for query, key and value vectors. By using

multiple heads, the model can evaluate its self-perception on the input sequence in parallel,

with each head computing its own attention scores independently (Zeng et al., 2021). The

concept of employing multiple self-attention heads in Transformers is analogous to the use of

multiple kernels in Convolutional Neural Networks (CNNs). In CNNs, each kernel is

responsible for learning a distinct representation or property at each level of the network.

Similarly, in Transformers, each head is designed to extract unique correlation information

from the input data, contributing to a more comprehensive and effective learning process.

4.4.Masking in Self-Attention

In the training phase of Transformers, a multi-headed self-attention layer in the decoder masks

portions of the target input to prevent the model from using future data points during the self-

attention process. This ensures that the decoder only processes previously predicted data and

does not try to anticipate future inputs. During training, the decoder does not receive the

model's projected output; instead, it uses the actual targets to drive learning. In the testing

phase, the expected words in the sequence are fed back to the decoder after passing through

the word embedding layer and position-coding vector.

4.5.Residual Connections

The use of residual connections in neural networks enables the gradient to flow directly from

the input to the output through bypasses. In Transformers, these connections are employed to

stabilize the training process, reduce the risk of vanishing gradients in deep neural networks,

enhance the model's generalization and facilitate efficient learning. Residual connections are

incorporated into both the encoder and decoder layers of the Transformer model. The output

of each sub-layer (self-attention or feed-forward) is added to its input (residual connection)

before being passed to the next layer

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥) + 𝑥 … [25]

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 233 -

4.6.Layer normalization

Layer normalization is a neural network technique that standardizes the distribution of

intermediary layers to facilitate gradient smoothing during training, resulting in quicker

convergence and better generalization to new data. This method is commonly utilized to

improve the performance of deep neural networks.

 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥) = 𝛾.
𝑥−𝜇

𝜎
+ 𝛽 … [26]

where,

𝜇 and 𝜎 are the mean and standard deviation of the features

𝛾 and 𝛽 are learnable parameters

4.7.Feed-forward Network

The feed-forward network in the Transformer model, which contain around two-thirds of its

parameters, have received less attention. These layers utilize a basic feedforward neural

network to convert the attention vector into a format that can be processed by subsequent

encoding or decoding layers. In contrast to RNNs, the feedforward network processes each

attention vector independently and these vectors are not dependent on each other (Geva et al.,

2020). This parallelization allows for all words to be sent simultaneously to the encoder block

and encoded at the same time, resulting in improved efficiency.

 𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2 … [27]

where,

𝑊1 and 𝑊2 are weight matrices and 𝑏1 and 𝑏2 are bias vectors

4.8.Linear layer

To augment the dimensionality of vectors, a linear layer is employed, which performs matrix

multiplication of the input vectors with a weight matrix, resulting in an output with a higher

number of dimensions. When dealing with machine translation, this layer is used to increase

the dimensionality of the encoded vectors to match the number of words in the translated output

in the target language.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 234 -

 𝑌 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 ∗ 𝑊 + 𝑏 … [28]

where,

𝐷𝑒𝑐𝑜𝑑𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡: The output from the final decoder block

𝑊: Weight matrix of the linear layer

𝑏: Bias vector

4.9.Softmax layer

After passing through the linear layer, the output undergoes a softmax activation function,

which transforms the input into a probability distribution that is easy to interpret. The softmax

layer outputs a probability distribution over the vocabulary, from which the most probable

token is selected during inference. The purpose of the softmax function is to normalize the

results of the linear layer, making them all positive and adding up to 1 (Tang and Matteson).

 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗
 … [29]

where,

𝑧𝑖: The 𝑖𝑡ℎ element of the output vector from the linear layer

𝑒𝑧𝑖: The exponential function applied to 𝑧𝑖

∑ 𝑒𝑧𝑗𝑗 : The sum of the exponentials of all elements of all elements in the output vector

4.10. The Output

Transformers are a class of neural networks that are primarily used for natural language

processing tasks, such as machine translation. They consist of two primary components: an

encoder and a decoder, which are made up of multiple interconnected layers of nodes. The

encoder processes the input data, while the decoder generates the output data. To train the

model, an optimization technique such as Adam and a loss function like mean squared error

(MSE) are typically used. By employing self-attention mechanisms, the Transformer model

can effectively model sequential data, allowing it to capture complex dependencies of varying

lengths in TS data (Wu et al., 2020). The Transformer model's versatility is enhanced by its

ability to be applied to a broad range of nonlinear dynamical systems and its flexibility to

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 235 -

handle both univariate and multivariate TS data with minimal changes to the model.

Furthermore, due to its parallel processing capability, the Transformer model can efficiently

handle input data and achieve faster and more effective training than other sequence models

such as RNNs, LSTMs and GRUs.

Question: Does Time Series Forecasting Use Both Encoder and Decoder in

Transformers?

Use Cases Encoder Decoder Explanation

Univariate forecasting (e.g.,

rainfall prediction)

 Yes Often

skipped or

simplified

Only encoder used to learn from

the input sequence. Decoder is

often omitted or reduced to a

projection head.

Multivariate forecasting with

long horizon (e.g., NDVI +

rainfall → forecast 7 days)

Yes Yes Full encoder–decoder setup

helps model complex input-

output mappings

Sequence-to-sequence tasks

(e.g., demand translation,

data imputation, anomaly

recovery)

Yes Yes True seq2seq structure needed

Classification of time series

(e.g., crop stress or drought

label)

 Yes No decoder Only encoder needed to learn

features for classification

Insights: In agricultural time series forecasting (e.g., predicting temperature, NDVI,

evapotranspiration for next 7 days):

• If it’s multi-variate, long-horizon, or multi-output, you’ll benefit from an encoder–decoder

Transformer.

• If it’s single-step forecast, univariate or simple regression, a well-designed encoder-only

Transformer is sufficient (and faster).

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 236 -

5. One dimensional Convolutional Neural Network (1d-CNN)

1d-CNN is a formidable tool in TS analysis, showcasing remarkable success in recognizing

temporal patterns. The fundamental architecture involves convolutional layers, sub-sampling

layers and fully-connected layers, stacked together for efficient feature extraction and

classification in TS data.

In the convolutional layer, nodes receive inputs from adjacent nodes in the preceding layer,

mimicking the temporal dependencies found in sequential data. Employing shared local

weights, this layer reduces memory usage and improves the network’s capability for capturing

the intricate time-dependent patterns:

𝑍𝑡 = 𝜎(𝑊.𝑋𝑡 + 𝑏) … [30]

Sub-sampling layers which incorporate non-linear down-sampling, aiding in reducing the

dimensionality of temporal data while enhancing the network’s efficiency in learning

sequential features:

𝑌𝑡 = 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑍𝑡) … [31]

In the final fully-connected layer, analogous to conventional neural networks, a comprehensive

matrix calculation occurs. This facilitates reasoning and generates the model’s output based on

the extracted temporal features, crucial for forecasting financial prices:

�̂�𝑡 = 𝑊𝑜𝑢𝑡𝑝𝑢𝑡. 𝐴𝑡 + 𝑏𝑜𝑢𝑡𝑝𝑢𝑡 … [32]

During training, the CNN optimizes model parameters to minimize the error between predicted

and actual output values in a TS, utilizing gradient-based optimization using backpropagation

to efficiently capture temporal dependencies:

𝐿𝑡 =
1

2
∑(𝑦𝑡,𝑖 − �̂�𝑡,𝑖)

2

𝑖

 … [33]

In essence, the integration of convolutional, sub-sampling and fully connected layers equips

CNNs to effectively discern temporal patterns and features in TS data, establishing them as a

robust tool for various applications in TS analysis (Fig. 3.15).

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 237 -

Figure 8: Convolutional Neural Network (1D-CNN) architecture (Nayak et al., 2024c)

CNN model Illustration for Image classification

Example: Mango Fruit Image Classification (Healthy vs Spongy)

Assume input image: 64×64×3 (RGB leaf image)

Class 0: Healthy fruit

Class 1: Spongy Fruit

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 238 -

Figure 9: CNN pipeline for Mango Image Fruit classification (Kiran et al. 2024)

Step-by-step CNN pipeline:

1. Convolution layer with 32 filters (3x3x3) → output 62x62x32

2. ReLU activation

3. Max pooling (2x2) → output 31x31x32

4. Flatten → vector of size 3072

5. Fully connected layer → logits

6. Softmax → probabilities [0.8, 0.2]

7. Output class: Healthy Fruit (80% confidence)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 239 -

Supplementary Section

S1: Abbreviations and Acronyms in Deep Learning

Acronym Full Form

DL Deep Learning

ML Machine Learning

AI Artificial Intelligence

ANN Artificial Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

CNN Convolutional Neural Network

FC Fully Connected (Layer)

TS Time Series

MSE Mean Squared Error

MAE Mean Absolute Error

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

CE Cross-Entropy

BPTT Backpropagation Through Time

POS Part-of-Speech

QKV Query, Key, Value (used in attention)

PE Positional Encoding

d_model Embedding vector dimension in Transformers

FFN Feed-Forward Network

NLP Natural Language Processing

NDVI Normalized Difference Vegetation Index

ET Evapotranspiration

PDS Public Distribution System (in agriculture)

Adam Adaptive Moment Estimation

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 240 -

S.2. Hyperparameters in Deep Learning

Hyperparameters are external configurations of the model set prior to training and have a

significant influence on the performance of deep learning models. Unlike model parameters

(weights and biases), Hyperparameters are not learned from the data but must be tuned

manually or using automated methods (like grid search or Bayesian optimization).

Table S2: List of Common Hyperparameters

Hyperparameter Description

Learning Rate (η)
Controls how much weights are updated

during backpropagation.

Batch Size
Number of samples processed before model

is updated.

Epochs
Full iterations over the entire training

dataset.

Optimizer
Algorithm used to update weights (e.g.,

SGD, Adam, RMSProp).

Loss Function
Objective minimized during training (e.g.,

MSE for regression, CE for class).

Activation Function
Function applied to neuron outputs (e.g.,

ReLU, Sigmoid, Tanh).

Dropout Rate
Fraction of neurons randomly ignored to

prevent overfitting.

Number of Layers Number of hidden layers in the network.

Number of Neurons Number of units per hidden layer.

Weight Initialization
Method for initializing weights (e.g.,

Xavier, He, Random Normal).

Early Stopping
Technique to halt training once validation

loss stops improving.

Regularization (L1/L2)
Penalties added to loss function to reduce

overfitting.

Window/Sequence Size
Number of time steps considered in time

series models like RNN/LSTM.

Kernel Size (CNN) Size of filter in convolutional layers.

Stride (CNN)
Step size for moving the kernel/filter over

the input.

Pooling Size (CNN)
Dimensions of the pooling operation (e.g.,

2×2 max pooling).

Embedding Size
Dimension of dense vector in NLP or time

series input representation.

Number of Heads (Transformer)
Parallel attention mechanisms in multi-head

attention.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 241 -

d_model (Transformer)
Dimensionality of input/output of

Transformer layers.

___________________ DL General Python code for TS forecasting__________

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

import keras_tuner as kt

import matplotlib.pyplot as plt

=== Load and preprocess data ===

df = pd.read_csv("/content/Weekly_Dehradoon_Kalman.csv", parse_dates=['Date'])

#df = df[['Date', 'Price']].dropna()

df['Price'] = df['Price'].interpolate(method='linear') # Linear interpolation

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

ACF and PACF first

plot_acf(df['Price'], lags=30)

plot_pacf(df['Price'], lags=30)

plt.show()

Normalize

scaler = MinMaxScaler()

df['Price'] = scaler.fit_transform(df[['Price']])

Create sequences

def create_sequences(data, seq_length=10):

 xs, ys = [], []

 for i in range(len(data) - seq_length):

 x = data[i:(i + seq_length)]

 y = data[i + seq_length]

 xs.append(x)

 ys.append(y)

 return np.array(xs), np.array(ys)

seq_length = 10

X, y = create_sequences(df['Price'].values, seq_length)

Train/test split

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=False, test_size=0.2)

X_train = X_train[..., np.newaxis]

X_test = X_test[..., np.newaxis]

model_type = 'gru' # Change this as needed

def build_model(hp):

 model = keras.Sequential()

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 242 -

 if model_type == 'rnn':

 model.add(layers.SimpleRNN(units=hp.Int("units", 32, 128, step=32),

 return_sequences=False,

 input_shape=(seq_length, 1)))

 elif model_type == 'gru':

 model.add(layers.GRU(units=hp.Int("units", 32, 128, step=32),

 return_sequences=False,

 input_shape=(seq_length, 1)))

 elif model_type == 'lstm':

 model.add(layers.LSTM(units=hp.Int("units", 32, 128, step=32),

 return_sequences=False,

 input_shape=(seq_length, 1)))

 elif model_type == 'cnn':

 model.add(layers.Conv1D(filters=hp.Int("filters", 32, 128, step=32),

 kernel_size=hp.Choice("kernel_size", [2, 3, 4]),

 activation='relu',

 input_shape=(seq_length, 1)))

 model.add(layers.GlobalAveragePooling1D()) # Replaced MaxPooling1D and Flatten

with GlobalAveragePooling1D

 model.add(layers.Dense(1))

 model.compile(optimizer=keras.optimizers.Adam(hp.Choice("lr", [1e-2, 1e-3, 1e-4])),

 loss='mse', metrics=['mae'])

 return model

tuner = kt.RandomSearch(

 build_model,

 objective='val_loss',

 max_trials=5,

 executions_per_trial=1,

 directory='tuning_results',

 project_name=model_type

)

tuner.search(X_train, y_train, validation_split=0.2, epochs=30, verbose=1)

best_model = tuner.get_best_models(1)[0]

best_model.summary()

preds = best_model.predict(X_test)

preds_rescaled = scaler.inverse_transform(preds)

y_test_rescaled = scaler.inverse_transform(y_test.reshape(-1, 1))

plt.plot(y_test_rescaled, label="True")

plt.plot(preds_rescaled, label="Predicted")

plt.title(f"{model_type.upper()} Forecasting")

plt.legend()

plt.show()

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 243 -

from sklearn.metrics import mean_squared_error, mean_absolute_error

Calculate metrics

rmse = np.sqrt(mean_squared_error(y_test_rescaled, preds_rescaled))

mae = mean_absolute_error(y_test_rescaled, preds_rescaled)

mape = np.mean(np.abs((y_test_rescaled - preds_rescaled) / y_test_rescaled)) * 100

print(f"RMSE: {rmse:.3f}")

print(f"MAE: {mae:.3f}")

print(f"MAPE: {mape:.2f}%")

___________________ Transformer General Python code for TS forecasting__________

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow import keras

from sklearn.preprocessing import MinMaxScaler

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error, mean_absolute_error

import matplotlib.pyplot as plt

Mock a sample version of the CSV for demonstration

df = pd.read_csv("your_file.csv", parse_dates=['Date'])

df['Price'] = df['Price'].interpolate(method='linear')

Normalize

scaler = MinMaxScaler()

df['Price'] = scaler.fit_transform(df[['Price']])

Create sequences

def create_sequences(data, seq_length=10):

 xs, ys = [], []

 for i in range(len(data) - seq_length):

 x = data[i:(i + seq_length)]

 y = data[i + seq_length]

 xs.append(x)

 ys.append(y)

 return np.array(xs), np.array(ys)

seq_length = 10

X, y = create_sequences(df['Price'].values, seq_length)

X_train, X_test, y_train, y_test = train_test_split(X, y, shuffle=False, test_size=0.2)

X_train = X_train[..., np.newaxis]

X_test = X_test[..., np.newaxis]

Transformer Block

class TransformerBlock(keras.layers.Layer):

 def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):

 super(TransformerBlock, self).__init__()

 self.att = keras.layers.MultiHeadAttention(num_heads=num_heads,

key_dim=embed_dim)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 244 -

 self.ffn = keras.Sequential(

 [keras.layers.Dense(ff_dim, activation="relu"), keras.layers.Dense(embed_dim)]

)

 self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6)

 self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6)

 self.dropout1 = keras.layers.Dropout(rate)

 self.dropout2 = keras.layers.Dropout(rate)

 def call(self, inputs, training=None):

 attn_output = self.att(inputs, inputs)

 attn_output = self.dropout1(attn_output, training=training)

 out1 = self.layernorm1(inputs + attn_output)

 ffn_output = self.ffn(out1)

 ffn_output = self.dropout2(ffn_output, training=training)

 return self.layernorm2(out1 + ffn_output)

Positional Encoding

class PositionalEncoding(keras.layers.Layer):

 def __init__(self, sequence_length, d_model):

 super(PositionalEncoding, self).__init__()

 self.pos_encoding = self.positional_encoding(sequence_length, d_model)

 def get_angles(self, pos, i, d_model):

 angles = pos / np.power(10000, (2 * (i//2)) / np.float32(d_model))

 return angles

 def positional_encoding(self, position, d_model):

 angle_rads = self.get_angles(np.arange(position)[:, np.newaxis],

 np.arange(d_model)[np.newaxis, :],

 d_model)

 angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])

 angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])

 return tf.cast(angle_rads[np.newaxis, ...], dtype=tf.float32)

 def call(self, inputs):

 return inputs + self.pos_encoding[:, :tf.shape(inputs)[1], :]

Build Transformer

def build_transformer_model(seq_len, d_model=64, num_heads=2, ff_dim=128):

 inputs = keras.Input(shape=(seq_len, 1))

 x = keras.layers.Dense(d_model)(inputs)

 x = PositionalEncoding(seq_len, d_model)(x)

 x = TransformerBlock(d_model, num_heads, ff_dim)(x, training=None)

 x = keras.layers.GlobalAveragePooling1D()(x)

 x = keras.layers.Dense(64, activation="relu")(x)

 outputs = keras.layers.Dense(1)(x)

 model = keras.Model(inputs=inputs, outputs=outputs)

 model.compile(optimizer="adam", loss="mse", metrics=["mae"])

 return model

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 245 -

Train the model

transformer_model = build_transformer_model(X_train.shape[1])

history = transformer_model.fit(X_train, y_train, validation_split=0.2, epochs=30,

verbose=0)

Predictions and evaluation

preds = transformer_model.predict(X_test)

preds_rescaled = scaler.inverse_transform(preds)

y_test_rescaled = scaler.inverse_transform(y_test.reshape(-1, 1))

rmse = np.sqrt(mean_squared_error(y_test_rescaled, preds_rescaled))

mae = mean_absolute_error(y_test_rescaled, preds_rescaled)

mape = np.mean(np.abs((y_test_rescaled - preds_rescaled) / y_test_rescaled)) * 100

print(f"RMSE: {rmse:.3f}")

print(f"MAE: {mae:.3f}")

print(f"MAPE: {mape:.2f}%")

Visualization

preds = transformer_model.predict(X_test)

preds_rescaled = scaler.inverse_transform(preds)

y_test_rescaled = scaler.inverse_transform(y_test.reshape(-1, 1))

plt.plot(y_test_rescaled, label="True")

plt.plot(preds_rescaled, label="Predicted")

#plt.title(f"{model_type.upper()} Forecasting")

plt.legend()

plt.show()

Suggested Readings

Ahmed, S., Nielsen, I. E., Tripathi, A., Siddiqui, S., Ramachandran, R. P. and Rasool, G.

(2023). Transformers in time-series analysis: A tutorial. Circuits, Systems, and Signal

Processing, 42(12), 7433-7466.

Avinash, G., Ramasubramanian, V., Ray, M., Paul, R. K., Godara, S., Nayak, G. H. and

Iquebal, M. A. (2024). Hidden Markov guided Deep Learning models for forecasting

highly volatile agricultural commodity prices. Applied Soft Computing, 158, 111557.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

econometrics, 31(3), 307-327.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis:

forecasting and control. John Wiley & Sons.

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014). Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555. DOI:

10.48550/arXiv.1412.3555.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the

variance of United Kingdom inflation. Econometrica: Journal of the econometric society,

987-1007.

https://doi.org/10.48550/arXiv.1412.3555

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 246 -

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

http://www.deeplearningbook.org

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

Karpathy, A. (2015, May 21). The unreasonable effectiveness of recurrent neural networks.

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Kiran, P. R., Avinash, G., Ray, M., Nigam, S., & Parray, R. A. (2024). Deep learning models

for detection and classification of spongy tissue disorder in mango using X-ray images.

Journal of Food Measurement and Characterization, 18(9), 7806-7818.

Nayak, G. H., Alam, M. W., Avinash, G., Singh, K. N., Ray, M. and Kumar, R. R. (2024a). N-

BEATS Deep Learning Architecture for Agricultural Commodity Price

Forecasting. Potato Research, 1-21.

Nayak, G. H., Alam, M. W., Singh, K. N., Avinash, G., Kumar, R. R., Ray, M. and Deb, C. K.

(2024b). Exogenous variable driven deep learning models for improved price forecasting

of TOP crops in India. Scientific Reports, 14(1), 17203.

Nayak, G. H., Alam, W., Singh, K. N., Avinash, G., Ray, M. and Kumar, R. R. (2024c).

Modelling monthly rainfall of India through transformer-based deep learning

architecture. Modeling Earth Systems and Environment, 10(3), 3119–3136.

Olah, C. (2015, August 27). Understanding LSTM networks. Colah's Blog.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Tong, H., & Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical

data. Journal of the Royal Statistical Society: Series B (Methodological), 42(3), 245-268.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N. and Polosukhin,

I. (2017). Attention is all you need. Advances in neural information processing

systems, 30.

http://www.deeplearningbook.org/
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 247 -

Hybrid TS Modelling: Applications in Abiotic Stress

Management
Santosha Rathod, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi Kumar, Prabhat

Kumar

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

Email: santosha.rathod@icar.org.in

Introduction

Time series refer to a set of observations recorded at regular intervals over time. Time series

analysis (TSA) is an essential statistical tool used to understand the temporal dynamics of a

variable, capture its historical behaviour, and project future outcomes. It is widely applied

across disciplines to model and forecast time-dependent phenomena, such as stock prices,

energy demand, rainfall, or crop yields. Among the classical approaches, the Box-Jenkins

methodology for Autoregressive Moving Average (ARMA) modeling, introduced by Box and

Jenkins (1970), is one of the most widely adopted techniques. Its structured three-step approach

model identification, parameter estimation, and diagnostic checking—has made it the

foundation for many forecasting applications involving linear time series data.

In the context of abiotic stress management in agriculture, time series models are critical for

forecasting weather extremes and environmental conditions such as temperature, rainfall,

drought indices, evapotranspiration, and soil moisture. These variables often exhibit strong

seasonal trends and autocorrelations, making time series modeling a reliable method for

predicting stress-prone periods. For instance, predicting low rainfall months ahead of the

monsoon season enables proactive water conservation measures, drought preparedness, and the

selection of suitable crop varieties.

By enabling the quantitative forecasting of climatic and environmental factors, TSA supports

better risk management, resource allocation, and timely agricultural interventions. Moreover,

advanced versions like ARIMA, SARIMA, and hybrid machine learning–statistical models

provide flexibility to handle non-stationary and nonlinear behaviors common in abiotic stress

datasets. Thus, time series modeling is not just a forecasting tool—it is a vital component in

building climate-resilient agriculture that can anticipate and adapt to the challenges posed by

environmental variability and stressors. A major limitation of traditional linear time series

models, particularly the Autoregressive Integrated Moving Average (ARIMA) model, lies in

their assumption of linearity. As a consequence, these models are inherently incapable of

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 248 -

capturing nonlinear patterns present in many real-world time series datasets. However, in

practice, time series often exhibit a combination of both linear and nonlinear structures. Under

such circumstances, relying solely on ARIMA or machine learning models like Artificial

Neural Networks (ANN) and Support Vector Machines (SVM) may prove inadequate for

achieving satisfactory forecasting performance. To address this issue, hybrid modeling

strategies have been developed, which aim to integrate the strengths of different approaches.

Empirical studies (Zhang 2003; Jha and Sinha 2014; Chen and Wang 2007; Kumar and

Prajneshu 2015; Ray et al. 2016) have shown that such hybrid models can significantly enhance

forecasting accuracy by effectively modeling both linear and nonlinear components.

Autoregressive Integrated Moving Average (ARIMA) model

One of the most widely adopted classical models for time series analysis is the ARIMA

model. Its popularity stems from its solid statistical foundation and the structured model

building procedure proposed by Box and Jenkins (1970). Since many time series are non-

stationary, the differencing operator d is applied to transform the series into a stationary form.

Once the series becomes stationary through differencing, the general ARIMA model can be

specified as ARIMA(p,d,q), where p is the order of the autoregressive part, d is the degree of

differencing, and q is the order of the moving average part. A time series process YtY_tYt is

said to follow an integrated ARMA process if ∆𝑌𝑡 = (1 − 𝐵)
𝑑𝜀𝑡, where 𝐵 is the backward shift

operator and 𝜀𝑡is a white noise error term. The ARIMA model is mathematically expressed as:

 ∅(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡 (1)

Where, 𝜀𝑡~𝑊𝑁 (0, 𝜎
2) and WN is the white noise. The Box-Jenkins ARIMA model

building consists of three steps viz., identification, estimation and diagnostic checking.

Artificial Neural Network for Time series

In contrast to linear models, artificial neural networks provide a flexible framework

capable of approximating complex nonlinear relationships within time series data. For time-

dependent data, the neural network architecture is adapted accordingly, resulting in what is

known as a Time Delay Neural Network (TDNN). In such networks, time lags or delayed

observations of the series are included as input features, allowing the model to learn temporal

dependencies. A static neural network structure, such as the multilayer perceptron, is extended

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 249 -

with dynamic properties by incorporating these time lags into its architecture (Haykin 1999).

Thus, a common method for constructing a neural network for time series forecasting involves

feeding past values of the series into the input layer. The output 𝑌𝑡 of the TDNN is then a

function of these time-lagged inputs, transformed through the layers of the network using

nonlinear activation functions. This architecture enables the network to capture intricate

nonlinear relationships that are often missed by conventional linear models.

𝑌𝑡 = 𝛼0 + ∑ 𝛼𝑗
𝑞
𝑗=1 𝑔(𝛽0𝑗 + ∑ 𝛽𝑖𝑗𝑌𝑡−𝑝

𝑝
𝑖=1) + 𝜀𝑡 (2)

where, 𝛼𝑗(𝑗 = 0,1,2, … , 𝑞) and 𝛽𝑖𝑗(𝑖 = 0,1,2, … , 𝑝, 𝑗 = 0,1,2, . . . , 𝑞) are the model

parameters, also called as the connection weights, p is the number of input nodes, q is the

number of hidden nodes and 𝑔 is the activation function. The architecture of neural network is

represented in figure 1.

Fig.1: Artificial Neural Network Structure

Support Vector Machine for Time Series

Support Vector Machine (SVM) is a supervised machine learning approach that was

initially developed for solving linear classification problems. In 1997, Vapnik extended the

application of SVM to regression tasks by introducing the ε-insensitive loss function, thereby

giving rise to the Support Vector Regression (SVR) framework (Vapnik, 1997). This

innovation allowed the method to handle regression problems effectively, particularly those

involving nonlinear relationships, and led to the development of the Nonlinear Support Vector

Regression (NLSVR) model. The core idea behind NLSVR is to project the original input data

into a higher-dimensional feature space where linear regression can be performed, thus

capturing complex, nonlinear patterns in the data. To formalize this approach, let us consider a

dataset represented by the vector 𝑍 = {𝑥𝑖 𝑦𝑖}𝑖=1
𝑁 where 𝑥𝑖 ∈ 𝑅

𝑛 denotes the input feature

vector, 𝑦𝑖 is the corresponding scalar output, and N is the total number of observations in the

dataset. In NLSVR, a regression function is constructed in such a way that it approximates the

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 250 -

relationship between inputs and outputs in the transformed feature space with minimal error,

as defined by the ε-insensitive loss function. The general form of the nonlinear support vector

regression estimation function can be expressed as follows:

𝑓(𝑥) = 𝑊𝑇𝜙 (𝑥) + 𝑏 (3)

where ϕ(x) is a nonlinear mapping from the input space to a high-dimensional feature

space, w is the weight vector, b is the bias term, and ⟨⋅,⋅⟩ denotes the dot product in the feature

space. The goal of NLSVR is to find the optimal parameters w and b that minimize a

regularized risk function while ensuring that the prediction error for each data point remains

within a pre-defined ε-tube around the true value.

where 𝜙(.): 𝑅𝑛→ 𝑅𝑛ℎ is a nonlinear mapping function which map the original input

space into a higher dimensional feature space vector. W∈𝑅𝑛ℎ is weight vector, 𝑏 is bias term

and superscript T denotes the transpose.

BDS (Brock-Dechert-Scheinkman) Test for testing Nonlinearity

BDS (Brock et al. 1996), test utilizes the concept of spatial correlation from chaos

theory. The computational procedure is given as follows

v) Let the considered time series is

  1 2 3[, , ,...,]i Nx x x x x= (4)

vi) The next step is to specify a value of m (embedding dimension), embed the time series

into m dimensional vectors, by taking each m successive points in the series. This

transforms the series of scalars into a series of vectors with overlapping entries

1 1 2

2 2 3 1

1

(, ,...,)

(, ,...,)

.

.

.

(, ,...,)

m

m

m

m

m

N m N m N m N

x x x x

x x x x

x x x x

+

− − − +

=

=

= (5)

vii) In the third step correlation integral is computed, which measures the spatial correlation

among the points, by adding the number of pairs of points (i, j), where 1≤ i ≤ N and 1≤

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 251 -

j≤N , in the m-dimensional space which are “close” in the sense that the points are

within a radius or tolerance  of each other.

, , ;

1

(1)
m i j

i jm m

C I
N N

 


=
−
 (6)

 Where Ii,j;= 1 if m m

i jx x − 

 = 0 otherwise

viii) If the time series is i.i.d. then C ,m [C ,1]
m

ix) The BDS test statistics is as follows

, ,1

,

,

[()]m

m

m

m

N C C
BDS

V

 





−
= (7)

Where,

1
2 2 2 2 2 2

,

1

4[2 (1)]
m

m m j j m m

m

j

V K K C m C m KC   

−
− −

=

= + + − −

, , ;

6

(1)(2)
i j N

i j Nm m m

K K h
N N N

 
 

= =
− −



, ; , ; , ; , ; , ; , ;

, , ;

[]

3

i j j N i N N j j i i N

i j N

I I I I I I
h

     



+ +
=

The choice of m and  depends on number of data. The null hypothesis is data are

independently and identically distributed (i.i.d.) against the alternative hypothesis the data are

not i.i.d. this implies that the time series is non-linearly dependent. BDS test is a two-tailed test;

the null hypothesis should be rejected if the BDS test statistic is greater than or less than the

critical values.

The Hybrid Methodology

The hybrid method considers the time series 𝑦𝑡 as a combination of both linear and non-

linear components. This approach follows the Zhang’s (2003) hybrid approach, accordingly

the relationship between linear and nonlinear components can be expressed as follows

𝑦𝑡 = 𝐿𝑡 + 𝑁𝑡 (8)

Let 𝐿𝑡 and 𝑁𝑡 represent the linear and nonlinear components of a given time series,

respectively. In the present study, the linear component is modeled using the Autoregressive

Integrated Moving Average (ARIMA) model, while the nonlinear component is captured

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 252 -

through Time Delay Neural Network (TDNN) and Nonlinear Support Vector Regression

(NLSVR). The proposed hybrid methodology comprises three sequential steps.

In the first step, an ARIMA model is applied to capture and forecast the linear structure

of the series. Let the linear forecast obtained from the ARIMA model be denoted by �̂�𝑡. In the

second step, residuals are computed as 𝑒𝑡 = 𝑦𝑡 −�̂�𝑡 where 𝑦𝑡 represents the original series.

These residuals are then tested for nonlinearity using the BDS test (Brock, 1996). If the test

confirms the presence of nonlinearity, the residual series is modeled using TDNN and NLSVR.

In the final step, the forecasts of the linear and nonlinear components are combined to obtain

the aggregate forecast, thereby capturing both the linear and nonlinear dynamics inherent in

the original time series.

ˆ ˆˆ
t t ty L N= +

 (9)

Where, �̂�and �̂� represents the predicted linear and nonlinear component respectively.

The graphical representation of hybrid methodology is expressed in figure 2 and 3. Finally, the

performance of the models under consideration are compared using MSE (Mean Square Error),

RMSE (Mean Square Error) and by MAPE (Mean Absolute Percentage Error).

Fig. 2: Schematic representation of ARIMA-TDNN hybrid methodology

Fig. 3: Schematic representation of ARIMA-NLSVR hybrid methodology

This hybrid methodology approach can be further extended by using some other machine

learning techniques for varying autoregressive and moving average orders so that practical

validity of the model can be well established. The validity of hybrid models can be generalized

by extending this approach to many agricultural real life data sets.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 253 -

Illustration

Yearly data on mango yield (measured in MT/ha) for the state of Karnataka was obtained from

the official database of the National Horticulture Board (NHB) and the website

http://www.indiastat.com. To carry out the forecasting exercise, data spanning the period from

1980 to 2014 were considered. The dataset was split such that the observations from 1980 to

2011 were used for model development, while the data from 2012 to 2014 served as the

validation set to evaluate the out-of-sample forecasting accuracy of the selected models. A time

series plot of the mango yield in Karnataka over the years is shown in Fig. 4, which provides a

visual representation of the trend and variability in the yield over time. To model the yield

dynamics, an Autoregressive Integrated Moving Average (ARIMA) model was employed.

Initial diagnostic analysis revealed that the original yield series was non-stationary,

necessitating the application of first-order differencing to achieve stationarity. The appropriate

ARIMA model was then selected based on the inspection of the Autocorrelation Function

(ACF) and Partial Autocorrelation Function (PACF) plots. The model that best fitted the

training data was found to be ARIMA(0,1,1). The parameters of the selected ARIMA model

were estimated using the maximum likelihood estimation (MLE) method, and the

corresponding estimates are reported in Table 1. Additionally, the model’s predictive

performance was assessed using both the training dataset and the validation dataset, with the

results summarized in Tables 5 and 6, respectively.

Fig. 4: Time series plot of mango yield time series

Table 1: Parameter estimation of ARIMA (0 1 1) for Mango Yield time series.

Parameter Estimate
Standard

Error
t Value Approx. Pr > |t| Lag

P(Resi.) at 6 Lag

Constant 0.033 0.038 0.87 0.382 0 0.240

MA 1 0.581 0.161 3.64 0.003 1

The TDNN and NLSVR models were fitted to mango yield time series of Karnataka and the

model specifications are given in table 2 and 3. Further the model performance in training set

and testing data set is given in tables 5 and 6.

8

9

10

11

1
9
8

0

1
9
8

1

1
9
8

2

1
9
8

3

1
9
8

4

1
9
8

5

1
9
8

6

1
9
8

7

1
9
8

8

1
9
8

9

1
9
9

0

1
9
9

1

1
9
9

2

1
9
9

3

1
9
9

4

1
9
9

5

1
9
9

6

1
9
9

7

1
9
9

8

1
9
9

9

2
0
0

0

2
0
0

1

2
0
0

2

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

M
an

g
o

 P
ro

d
u
ct

io
n

Year

http://www.indiastat.com/

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 254 -

After fitting the ARIMA model, the residuals were subjected to the Brock-Dechert-Scheinkman

(BDS) test to assess the presence of nonlinearity. The results of the BDS test, presented in Table

4, indicate that the residuals obtained from the ARIMA model are nonlinear and statistically

significant. As outlined in the hybrid modeling framework, once the residual series is identified

as nonlinear, it can be further modeled using nonlinear approaches to capture the remaining

structure. In this study, the nonlinear models employed for modeling and forecasting the

ARIMA residuals include the Time Delay Neural Network (TDNN) and the Nonlinear Support

Vector Regression (NLSVR) models. Following the confirmation of nonlinearity in the ARIMA

residuals, both TDNN and NLSVR were independently fitted to the residual series. The

resulting forecasts from these models were then added to the forecasts obtained from the original

ARIMA model, thereby forming two hybrid models: ARIMA-TDNN and ARIMA-NLSVR.

The combined hybrid forecasts are expected to capture both the linear and nonlinear components

of the yield time series. The forecasting performance of these hybrid models was evaluated for

both the training period and the out-of-sample testing period, and the results are summarized in

Tables 5 and 6, respectively.

Table 5: Comparison of forecasting performance of all models in training data set.

Criteria ARIMA TDNN NLSVR
ARIMA-

TDNN

ARIMA-

NLSVR

MAPE 3.83 2.89 2.81 1.98 1.73

Table 6: Comparison of forecasting performance of all models in testing data set.

Year Actual Forecast

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 255 -

ARIMA TDNN NLSVR
ARIMA-

TDNN

ARIMA-

NLSVR

2012 10.84 11.75 9.68 10.71 10.12 10.59

2013 10.04 11.15 10.14 10.73 10.62 10.44

2014 9.93 8.67 10.37 9.25 10.01 10.12

MAPE 10.71 5.37 4.97 4.40 2.73

As described in the hybrid methodology section, hybrid models offer distinct advantages over

individual models by effectively capturing both linear and nonlinear structures present in time

series data. Based on the lowest Mean Absolute Percentage Error (MAPE) values observed for

both the training (Table 5) and testing (Table 6) data sets, it is evident that the hybrid model

combining ARIMA and Nonlinear Support Vector Regression (ARIMA-NLSVR)

outperformed all other models considered in the study. Both hybrid models—ARIMA-TDNN

and ARIMA-NLSVR—showed improved performance over the standalone models, namely

ARIMA, TDNN, and NLSVR. Among these, the ARIMA-NLSVR model delivered the most

accurate forecasting results. This enhanced performance can be attributed to the hybrid

methodology’s ability to address both the linear and nonlinear components inherent in the

mango yield time series of Karnataka.

Conclusion

The findings of this study highlight the superiority of hybrid time series modeling over single-

model approaches for forecasting agricultural yield data. Given that the mango yield time series

exhibited both linear and nonlinear patterns, the hybrid models demonstrated better accuracy

in capturing the underlying structure. In particular, the ARIMA-NLSVR model showed

consistent and superior forecasting accuracy across both the training and testing periods. The

results underscore the practical value of hybrid approaches in time series forecasting, and future

extensions of this work could explore the integration of other advanced machine learning

techniques or varied autoregressive and moving average model orders to further enhance the

predictive performance and robustness of the forecasting framework.

R codes to implement Hybrid TS models

nrow(available.packages())

rm(list=ls())

install.packages()

install.packages(c("forecast", "e1071", "tseries", "ggplot2", "fNonlinear", "lmtest"))

library(forecast)

library(e1071)

library(tseries)

library(ggplot2)

library(tidyverse)

library(fNonlinear)

library(lmtest)

g=read.table(file="rf.txt",header=T)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 256 -

head(g)

dim(g)

Box.test(g$Rainfall)

rf1=read.table(file="rf1.txt",header=T)

head(rf1)

ggplot(data = rf1, aes(x = Month, y = Rainfall))+ geom_line(color = "#00AFBB", size = 1) +

 labs(x = "Months", y = "Rainfall") + ggtitle("TS Plot of Monthly Rainfall Data")

bdsTest(g$Rainfall, m = 3, eps = NULL, title = NULL, description = NULL)

dim(g)

a1=g$Rainfall[1:1416]

a2=g$Rainfall[1417:1428]

Box.test(a1)

acf(a1)

pacf(a1)

############# ARIMA Fitting #########

m1=auto.arima(a1)

coeftest(m1)

accuracy(m1)

Box.test(m1$residuals)

fitted1=m1$fitted

write.csv(as.data.frame(fitted1), file="ARIMA_Fitted.csv")

f1=forecast(m1, h=12)

f11=data.frame(f1)

f12=f11$Point.Forecast

mse11=abs(a2-f12)^2

mse1=mean(mse11)

rmse1=sqrt(mse1)

rmse1

write.csv(as.data.frame(f12), file="ARIMA_Forecasted.csv")

################### ANN ##########

m2=nnetar(a1,6, P=1, 10, repeats=25, xreg=NULL, lambda=NULL, model=NULL,

subset=NULL, scale.inputs=TRUE, maxit=150)

m2

accuracy(m2)

fitted2=m2$fitted

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv")

Box.test(m2$residuals)

f2=forecast(m2, h=12)

f21=data.frame(f2)

f22=f21$Point.Forecast

mse21=abs(a2-f22)^2

mse2=mean(mse21)

rmse2=sqrt(mse2)

rmse2

write.csv(as.data.frame(f22), file="ANN_Forecasted.csv")

m3=nnetar(a1)

accuracy(m3)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 257 -

m3

fitted3=m3$fitted

f3=forecast(m3, h=12)

f31=data.frame(f3)

f32=f31$Point.Forecast

mse31=abs(a2-f32)^2

mse3=mean(mse31)

rmse3=sqrt(mse3)

rmse3

Box.test(m3$residuals)

write.csv(as.data.frame(fitted2), file="ANN_Fitted.csv")

write.csv(as.data.frame(f32), file="ANN_Forecasted.csv")

################### SVR ##########

X1=g$Rainfall[1:1416]

Y1=g$Rainfall[2:1417]

X2=g$Rainfall[1416:1427]

Y2=g$Rainfall[1417:1428]

m4=svm(X1,Y1,degree = 3,cost = 45.69, nu=0.5,tolerance = 0.00001,epsilon = 0.00001)

summary(m4)

fitted4 <- fitted(m4) ## Fitted values

mse41=abs(Y1-fitted4)^2

mse4=mean(mse41)

rmse4=sqrt(mse4)

rmse4

Box.test(m4$residuals)

s3=predict(m4,X2)

mse61=abs(Y2-s3)^2

mse6=mean(mse61)

rmse6=sqrt(mse6)

rmse6

############# ARIMA ###########

##########Significance Comparison ##########

########## For testing set ######

dm.test(m1$residuals, m2$residuals)

dm.test(m1$residuals, m3$residuals)

dm.test(m1$residuals, m4$residuals)

######## You have to do it for testing set also #####

########### Hybrid Modeling ##########

r1=m1$residuals

bdsTest(r1, m = 3, eps = NULL, title = NULL, description = NULL)

n1=nnetar(r1)

n1f=n1$fitted

c1=(m1$fitted)+n1f

c11=c1[32:1416]

a11=a1[32:1416]

mse51=abs(a11-c11)^2

mse5=mean(mse51)

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 258 -

rmse5=sqrt(mse5)

rmse5

############# Comparison###########

accuracy(m1)

accuracy(m2)

rmse4

rmse5

################### Fitted Plots ##########

rm(list=ls())

library(tidyverse)

library(readxl)

library(ggplot2)

Data1<-as.data.frame(read_excel("Fitted_Plot.xlsx", col_names = TRUE,sheet = "data"))

head(Data1)

Date <- seq(as.Date("2020/1/06"), as.Date("2020/06/30"), "day")

head(Data1)

RF=Data1$RF

Actual=Data1$Actual

Model1=Data1$Model1

Model2=Data1$Model2

Model3=Data1$Model3

Data2=data.frame(Date, RF, Actual,Model1, Model2, Model3)

df <- Data2 %>%

 select(Date, Actual, Model1, Model2, Model3) %>%

 gather(key = "Models", value = "RF", -Date)

tail(df)

p1<-ggplot(df, aes(x = Date, y = RF)) +

 geom_line(aes(color = Models), size = 1) + scale_x_date(date_labels = "%d/%b-%Y")+

labs(x = "Date", y = "RF")+ ggtitle("Actual v/s Fitted plot RF")+

 theme(plot.title = element_text(size = 11))

p1+geom_vline(xintercept = as.Date("2020-06-24"), color="blue4")

Suggested Readings

Box, G.E.P. and Jenkins, G. (1970). Time series analysis, Forecasting and control, Holden-

Day, San Francisco, CA.

Brock, W.A., Dechert, W.D., Scheinkman, J.A, and lebaron, B. (1996). A test for independence

based on the correlation dimension, Econometric reviews, 15:197-235.

Chen, K. Y. and Wang, C. H. (2007). Support vector regression with genetic algorithm in

forecasting tourism demand. Tourism Management, 28:215-226.

Gujarati, D. N., Porter, D. C. and Gunasekar, S. (2013). Basic Econometrics (Fifth Edition),

Tata McGraw-Hill Education Pvt. Ltd, ISBN 10: 0071333452 / ISBN 13:

9780071333450.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 259 -

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, New York.

Jha, G. K. and Sinha, K. (2012) Time-delay neural networks for time series prediction: an

application to the monthly wholesale price of oilseeds in India, Neural Computing and

Applications, 24(3), 563-571

Kumar, T. L. M and Prajneshu. (2015) Development of Hybrid Models for Forecasting Time-

Series Data Using Nonlinear SVR Enhanced by PSO. Journal of Statistical Theory and

Practice. 9(4), 699-711.

Naveena, K., Rathod, S., Shukla, G. and Yogish, K.J. 2014. Forecasting of coconut production

in India: A suitable time series model, International Journal of Agricultural

Engineering, 7(1):190-193.

Naveena, K., Singh, S., Rathod, S., and Singh, A. 2017. Hybrid ARIMA-ANN Modelling for

Forecasting the Price of Robusta Coffee in India. International Journal of Current

Microbiology and Applied Sciences, 6(7): 1721-1726.

Naveena, K., Singh, S., Rathod, S., and Singh, A. 2017. Hybrid Time Series Modelling for

Forecasting the Price of Washed Coffee (Arabica Plantation Coffee) in India.

International Journal of Agriculture Sciences, 9(10): 4004-4007.

Rathod, S. and Mishra, G.C. (2018). Statistical Models for Forecasting Mango and Banana

Yield of Karnataka, India. Journal of Agricultural Science and Technology. 20(4) July

2018.

Rathod, S., Singh, K, N., Paul, R.K., Meher, R.K., Mishra, G.C., Gurung, B., Ray, M. and

Sinha, K. 2017. An Improved ARFIMA Model using Maximum Overlap Discrete

Wavelet Transform (MODWT) and ANN for Forecasting Agricultural Commodity

Price. Journal of the Indian Society of agricultural Statistics. 71(2): 103–111.

Ray, M., Rai, A., Ramasubramanian, V. and Singh, K.N. (2016). ARIMA-WNN Hybrid Model

for Forecasting Wheat Yield Time-Series Data. Journal of the Indian society of

agricultural statistics. 70(1): 63-70.

Vapnik, V., Golowich, S., and Smola, A. (1997). Support vector method for function

approximation, regression estimation, and signal processing, In Mozer, M., Jordan, M

and Petsche, T. (Eds) Advances in Neural Information Processing Systems, 9:281-287,

Cambridge, MA, MIT Press.

Zhang, G.P. (2003). Time series forecasting using a hybrid ARIMA and neural network model.

Neurocomputing, 50, 159-175.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 260 -

Ensemble Time Series Framework for Agricultural Price

Forecasting
Kapil Choudhary

College of Agriculture, Sumerpur (Pali)- 306902, Agriculture University, Jodhpur

Email: kapiliasri@gmail.com

1. Introduction

Prices of agricultural commodities play a vital role in producers' incentives to produce and

consumers' economic access to food, leading to a usual dilemma for policy planners. Accurate

forecasts of agricultural commodity prices reflecting cumulative information held by different

economic agents can play a crucial role in marketing strategy and investment decisions and

offer suggestions for agricultural policy planning. However, the agricultural commodity

market is influenced by several factors such as climate variability, including seasonality of

production, the derived nature of demand, market imperfections, economic globalization, and

a series of administrative regulations, making the price series extremely complex with

nonlinearity, non-stationarity, and chaotic characteristics. All these complexities lead to the

price prediction of agricultural commodities, an extremely challenging task.

Extensive investigation of literatures confirms abundant studies trying to tackle and analyse

the complexities of price series for better forecasting. The models used in those studies can be

categorised under statistical models and artificial intelligence (AI) models. Statistical models

employed for agricultural price forecasting include models like ARIMA (Box et al., 2017) and

its constituent models. However, due to the pre-assumed linearity and fixed temporal constraint

among data, these statistical models did not meet the expected accuracy in predicting such

nonlinear and complex price series.

Whereas AI models, with their great self-learning capabilities, have evolved as important and

reliable means for the task. Various AI models being practiced for price forecasting include

time-delay neural network (TDNN), wavelet neural network (WNN), support vector machine

(SVM), extreme learning machine (ELM), etc. Although these techniques are established as

effective measures for any time series prediction, AI techniques suffer from some limitations

like problems of local minima, parameter sensitiveness, overfitting, the requirement of a large

dataset for better training, etc. However, there is no simple, effective way to build and select a

neural network. Thus a trial-and-error or cross-validation experiment is often adopted to find

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 261 -

the best model. There are several limitations with this keep-the-best (KTB) approach in

choosing a neural network model. First, the best selected model may not be a true optimal

model because of choice of different factors of a network may lead to choose an alternative

model. Second, neural networks are data-driven methods, so the selected best model may

overfit the specific sample data.

 To overcome these drawbacks, the potential of combining several neural network models to

form an ensemble for forecasting has been examined. According to Hibon and Evgeniou

(2005), an ensemble is more effective and stable than a single model (KTB). The basic idea of

model combination is to use each model’s unique feature to capture different patterns in the

data. Here combined forecast may not be good always but less risky to forecast compared to

the individual forecast method.

Combining different techniques to construct hybrid model has been preferred in the literature

to take advantage of each method. Among hybrid models, decomposition-based models are

important techniques in which the original complex series is first decomposed into subseries

with specific patterns and then built forecasting models for each subseries. Traditionally, two

component model-based techniques, additive and multiplicative decomposition models, have

been used in the field of time series forecasting. These techniques decompose a time series into

trend, cyclic, seasonal and irregular components. The additive method assumes that the

components are orthogonal, whereas the multiplicative methods assume that the trend and

seasonal components have a proportional relationship. To overcome these limitations,

frequency domain analysis (FDA) based decomposition methods are being used. FDA methods

have demonstrated better performance in dealing with the nonlinear, high-frequency time series

data. Among FDA, although Fourier spectral analysis has provided a general method to analyze

time-series data, there are some crucial restrictions of this transformation, i.e. the data must be

linear and strictly periodic or stationary. As the degree of nonlinearity and nonstationary in a

time series increases, Fourier decomposition's result often makes little physical sense. Another

decomposition technique in this category is wavelet decomposition, which is an effective and

widely used approach for analyzing the price series in both time and frequency domain

(Antoniadis, 1997). Although wavelet analysis has many advantages in analyzing

nonstationary time series data, it still suffers limitations like the prior selection of a filter

function due to its non-adaptive nature. To overcome these limitations, the adaptive empirical

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 262 -

mode decomposition (EMD) method for analysis of nonlinear and nonstationary time series

through a divide and conquer concept was developed (Huang et al., 1998). EMD method

decomposes time-series data into several independent intrinsic mode functions (IMFs) with

different amplitude and frequencies and a residue. However, EMD has proved to be a versatile

technique in a wide range of applications. However, it suffers from a major limitation of mode

mixing, which means that a single IMF contains sparsely distributed timescales, or similar

timescales are broken down into different IMFs. To address the problem of EMD, ensemble

empirical mode decomposition (EEMD) method was developed (Wu and Huang, 2009), which

significantly reduces the chance of mode mixing and represents a substantial improvement over

the original EMD.

The next step in developing hybrid methodology includes forecasting decomposed

components. The artificial neural networks (ANNs) is used to forecast each component

individually. One significant advantage of neural network models over other classes of

nonlinear model is that ANNs are universal approximators which can approximate any

continuous function with the desired accuracy in case of an adequate training dataset.

1. Decomposition Techniques

A decomposition technique is first used to decompose a complex time series into simpler or

more meaningful components. These components are then modelled individually using a

suitable forecasting model and the final forecasts are provided by ensembled the individual

forecasts. Some of the most powerful decomposition techniques are explained below:

2.1 Empirical mode decomposition (EMD)

The empirical mode decomposition (EMD) technique has been proposed by N.E. Huang et al.

(1998), with a view to analyze time-frequency distribution of nonlinear and nonstationary data.

It is an adaptive decomposition with which any complicated series can be decomposed into its

intrinsic mode functions (IMFs). IMFs have well-behaved Hilbert transforms, from which the

instantaneous frequencies can be calculated. Thus, we can localize any event on the time as

well as the frequency axis. The decomposition can also be viewed as an expansion of the data

in terms of the IMFs. Then, these IMFs, based on and derived from the data, can serve as the

basis of that expansion which can be linear or nonlinear as dictated by the data, and it is

complete and almost orthogonal. Most important of all, it is adaptive. The principle of this basis

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 263 -

construction is based on the physical time scales that characterize the oscillations of the

phenomena. The local energy and the instantaneous frequency derived from the IMFs through

the Hilbert transform can give us a full energy-frequency-time distribution of the data. Such a

representation is designated as the Hilbert spectrum; it would be ideal for nonlinear and

nonstationary data analysis.

After full decomposition we can get original series in such form

 𝑦𝑡 = 𝑐𝑡(1) + 𝑟𝑡(1)

 = 𝑐𝑡(1) + 𝑐𝑡(2) + 𝑟𝑡(2)

 = 𝑐𝑡(1) + 𝑐𝑡(2) + 𝑐𝑡(3) + 𝑟𝑡(3)

 ⋮

 =∑ 𝑐𝑡
𝑁
𝑗=1 (𝑗) + 𝑟𝑡(𝑁)

2.2 Ensemble EMD (EEMD)

Although the EMD shows great advantages in processing nonstationary and nonlinear energy

prices, there is still a disadvantage of the traditional EMD algorithm, i.e. the decomposition

results may be mode mixing, which means that a single IMF contains sparsely distributed

timescales, or similar timescales are broken down into different IMFs.

In order to overcome this shortcoming, Wu and Huang (2009) propose the EEMD algorithm.

The algorithm flow of EEM is as follows to find out 𝑗𝑡ℎIMF:

i. Introduce a number of Gaussian white noises 𝑛𝑡(𝑖)into data series 𝑦𝑡

Where 𝑛𝑡(𝑖)~𝑁(0, 𝜎
2) So 𝑦𝑡(𝑖) = 𝑦𝑡 + 𝑛𝑖(𝑡)

ii. Conduct the EMD decomposition on 𝑦𝑡(𝑖) respectively, and obtaining a set of

IMFs 𝑐𝑡(𝑖𝑗)and a residue 𝑟𝑡(𝑖)

Where 𝑐𝑡(𝑖𝑗)is the 𝑗𝑡ℎ IMF decomposed by EMD after adding the Gaussian white

noise for an 𝑖𝑡ℎ time.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 264 -

iii. Repeat the above-mentioned steps. The ensemble average of corresponding IMFs is

seen as the final decomposition result:

 𝑐𝑡(𝑗) =
1

𝑃
∑ 𝑐𝑡
𝑃
𝑖=1 (𝑖𝑗)

where 𝑃 is the ensemble size.

2. Time Delay Neural Network (TDNN) Model

The artificial neural network, inspired by the functioning of the human brain, consists of

abstractions of processing elements in the form of mathematical functions called artificial

neurons or nodes. The group of neurons operating together forms a layer of neurons and in

general, three distinct layers are formed in a standard ANN model. These three layers namely

the input layer, hidden layer and output layer are so interconnected with their nodes that each

layer receives input from its preceding layer and passes the output to the subsequent layer. The

input layer consists of the input series, the hidden layer performs the function of capturing the

pattern and features from the data and finally, the output layer gives the final output as

prediction or classification. The nodes of the hidden layer and output layer use a function called

activation function which can be the same or different in these two layers. The activation

function is used to introduce the nonlinearity in the model and also to limit the range of the

output.

ANN models are regarded as data-driven, nonlinear and non-parametric statistical methods

which capture the features and dependencies in a time series even when the relationship among

data points is unknown. The ANN models need proper training at first and then the trained

models are used for any application purpose. The information learned through training is stored

in the nodes in the form of weights and biases which are used while producing the required

outputs. Usually, a neural network is used effectively for pattern classification mainly for

unstructured static data (not related by time constraint). But for temporal data, its training and

pattern recognition is harder as the patterns evolve.

TDNN is a type of feed-forward neural network model that is being used for price series

forecasting successfully. This neural network model builds a short-term memory, in particular,

heteroassociative memory (Haykin, 2010), in its network through the use of time delays of a

univariate time series to capture the temporal dimension of the series. To achieve this, a time

series is first converted into a supervised learning format as a collection of samples. Each

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 265 -

sample constitutes an input component (𝑿) and an output component (Y). For example, if a

time series contain N observations 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑁 and the model is to be made using p lagged

values as input nodes, then to get one step ahead prediction the first sample will contain

𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑝 as input components and 𝑦𝑝+1 will be the output component. In this way, a set

of N-p samples are generated each consisting input vector (𝑿) and an output variable (Y). These

samples are fed into an algorithm to learn the mapping function from the input to the output

i.e. 𝑌 = 𝑓(𝑿). The task of the algorithm is to approximate or learn the real underlying mapping

function so well that it can predict the output variables with maximum possible accuracy

whenever new input data is given to it. The whole process of learning is called the training of

the neural network.

Training of neural network consists of several iterations of the propagation of signals in both

forward and backward direction. In forward propagation, the example sets having input and

output values obtained using the supervised learning format are fed into the networks. The

number of input values of the samples determines the number of input nodes of the network.

The input values are then passed to the nodes of the hidden layer as their weighted sum where

some affine transformations are done by nonlinear activation functions of the hidden nodes.

Mathematically, the forward propagation can be expressed as:

where, 𝑦𝑡, 𝑦𝑡−1, 𝑦𝑡−2, 𝑦𝑡−3, … , 𝑦𝑡−𝑝 are the input patterns, is the synaptic weight between

jth input neuron and mth hidden neuron, 𝜕𝑚 is the weight between mth hidden neuron and the

output neuron, is the bias, and are the activation functions of hidden and output

nodes, respectively and is the output of the neuron at time step. In backward

propagation, a loss function or cost function is computed by comparing the model output and

desired output. This loss function is traversed backwards in the network computing its gradient

or partial derivative with respect to all the weights in a particular order as a chain rule. The

partial derivative with negative direction accounts for gradient descent which updates the

synaptic weights of the network intending to minimize the loss function as small as possible.

These several iterations of forward and backward propagation of information of all the

1
1

0

p
q

t m mj t j m
m

j

y w y bγ ψ+ −
=

=

  
  =  +
    

  
 

mjw

mb ().ψ ().γ

1ty + 1t +

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 266 -

examples or samples are called an epoch of the training. Thus, the training of the model requires

the optimization of several hyperparameters like the number of hidden layers, the number of

hidden nodes in the layers, type of activation functions etc. Tuning of these hyperparameters

is problem dependent and determined through experimentation and grid search method on the

given data.

3.3 Extreme learning machine (ELM)

3. Hybrid method

Given a price series 𝑦𝑡, the modelling procedure consists of three main steps:

Step 1: Decomposition. The price series 𝑦𝑡 is decomposed into several meaningful and

simpler components using any of the decomposition techniques. Different techniques yield

different types of components based on their characteristics.

Step 2: Individual forecasts. Different forecasting techniques are used to model and forecast

the individual components obtained after decomposition. The multi-step ahead forecasts of

these components are obtained through iterative procedure using previous forecasted value as

an input for forecasting the future value.

Step 3: Ensemble. The final step is to ensemble the individual forecasts of each components

obtained by forecasting technique using addition to produce the final forecasts of the price

series taken.

4. R package for practical implications

Input

layer

Output
layer

Hidden
layer

Fig.: Feed-forward Neural Network: Information propagates in the forward direction only i.e. from

input to output;

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 267 -

eemdTDNN

 EMDTDNN (Empirical Mode Decomposition Based Time Delay Neural Network Model)

Description

The EMDTDNN function computes forecasted value with different forecasting evaluation

criteria for Empirical Mode Decomposition based Time Delay Neural Network Model.

Usage

EMDTDNN(xt, stepahead = 10, s.num = 4L, num.sift = 50L)

Arguments

xt Input univariate time series (ts) data.

stepahead The forecast horizon.

s.num Integer. Use the S number stopping criterion for the EMD procedure with the given

 values of S. That is, iterate until the number of extrema and zero crossings in the

 signal differ at most by one, and stay the same for S consecutive iterations.

num.sift Number of siftings to find out IMFs.

Examples

data("Data_Maize")

EMDTDNN(Data_ Maize)

(a) EEMDTDNN (Ensemble Empirical Mode Decomposition Based Time Delay Neural

Network Model)

Description

The EEMDTDNN function computes forecasted value with different forecasting evaluation

criteria for Ensemble Empirical Mode Decomposition based Time Delay Neural Network

Model.

Usage

EEMDTDNN(xt,stepahead=10,num.IMFs=emd_num_imfs(length(data)),s.num=4L,

num.sift=50L, ensem.size=250L, noise.st=0.2)

Arguments

xt Input univariate time series (ts) data.

stepahead The forecast horizon.

num.IMFs Number of Intrinsic Mode Function (IMF) for input series.

s.num Integer. Use the S number stopping criterion for the EMD procedure with the given

values of S. That is, iterate until the number of extrema and zero crossings in the

signal differ at most by one, and stay the same for S consecutive iterations.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 268 -

num.sift Number of siftings to find out IMFs.

ensem.size Number of copies of the input signal to use as the ensemble.

noise.st Standard deviation of the Gaussian random numbers used as additional noise.

Examples

Data("Data_Maize")

EEMDTDNN(Data_Maize)

References

Box, G.E.P. and Jenkins, G.M. (1970). Time Series analysis: Forecasting and control.

Holden-Day, San Francisco, CA.

Choudhary, K., Jha, G. K., Kumar, R. R. and Jaiswal, R. (2021). eemdTDNN :EEMD and its

variant based time-delay neural network model.

https://doi.org/https://cran.rstudio.com/web/packages/eemdTDNN/eemdTDNN.pdf

Choudhary, Kapil, Jha, G. K., Kumar, R. R. and Mishra, D. C. (2019). Agricultural

commodity price analysis using ensemble empirical mode decomposition: A case study

of daily potato price series. Indian Journal of Agricultural Sciences, 89(5), 882–886.

Haykin, S. (2009). Neural Networks and Learning Machines, Person Education. In Inc.,

Upper Saddle River, NJ, USA (3rd ed., Vols. 1–3, Issue 6). PHI Learning.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Snin, H. H., Zheng, Q., Yen, N. C., Tung,

C. C. and Liu, H. H. (1998). The empirical mode decomposition and the Hubert

spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 454, 903–995.

https://doi.org/10.1098/rspa.1998.0193

Jha, G. K. and Sinha, K. (2014). Time-delay neural networks for time series prediction: An

application to the monthly wholesale price of oilseeds in India. Neural Computing and

Applications, 24(3–4), 563–571. https://doi.org/10.1007/s00521-012-1264-z

Wu, Z. and Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise-assisted

data analysis method. Advances in Adaptive Data Analysis, 1(1), 1–41.

https://doi.org/10.1142/S1793536909000047

https://doi.org/https:/cran.rstudio.com/web/packages/eemdTDNN/eemdTDNN.pdf
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1007/s00521-012-1264-z
https://doi.org/10.1142/S1793536909000047

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 269 -

ML Optimization: Particle Swarm Optimization
Santosha Rathod, Nobin Chandra Paul, Ponnaganti Navyasree, K. Ravi Kumar, Prabhat

Kumar

ICAR-National Institute of Abiotic Stress Management, Baramati, Pune-413115

Email: santosha.rathod@icar.org.in

Introduction:

Particle Swarm Optimization (PSO) is a nature-inspired, evolutionary optimization

technique developed to address computationally intensive or complex optimization problems.

It is a stochastic, population-based optimization method that draws inspiration from the social

behavior of organisms that move in groups or swarms, such as birds or fish. Introduced by

James Kennedy and Russ Eberhart in 1995, PSO models the way these organisms communicate

and adjust their paths based on both their own experience and the behavior of others in the

group. Over the years, PSO has been successfully applied to a broad range of search and

optimization problems by abstracting the natural dynamics of swarm intelligence.

PSO shares some conceptual similarities with other evolutionary algorithms like

Genetic Algorithms (GA), in that both rely on a population of candidate solutions. However,

the two differ in their philosophical approach. While evolutionary algorithms are rooted in the

principle of survival of the fittest—emphasizing competition—PSO operates on a cooperative

principle. In PSO, all individuals or particles in the swarm are allowed to survive and evolve.

The success of one particle can influence and benefit others in the swarm, reflecting a

collaborative learning mechanism.

The basic unit of PSO is a particle, which represents a candidate solution that flies

through the search space in pursuit of the global optimum. Each particle updates its position

based on its own best-known position and the best-known position among its neighbors. A

swarm consists of n such particles, and they exchange information—either directly or

indirectly—to guide their movement through the solution space. During each iteration, the

position and velocity of each particle are updated, taking into account both the particle’s own

past performance and the performance of its neighbors. This dual influence allows the swarm

to balance exploration and exploitation, ultimately converging towards the optimal solution.

PSO Vectors:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 270 -

X vector: Current location (current position) of the particle in search space, P vector (pbest):

Location of best solution found so far by the particle and V vector: Gradient (direction) for

which particle will travel in, if undisturbed. All these vectors are continuously updated.

Let, 𝐴 ⊂ 𝑅𝑛be search space and the swarm is defined as a set 𝑆 = {𝑋1, 𝑋2, … , 𝑋𝑀} of 𝑀

particles (candidate solution), where 𝑀 is a user-defined parameter of the algorithm. Then 𝑖𝑡ℎ

particle dimension of 𝑑 is defined as 𝑋𝑖 = (𝑋𝑖1 , … , 𝑋𝑖𝑑)
𝑇 , 𝑖 = 1,2, … ,𝑀. Each particle is a

potential solution to a problem, characterized by three quantities: velocity 𝑉𝑖 = (𝑉𝑖1 , … , 𝑉𝑖𝑑)
𝑇,

current position 𝑋𝑖 = (𝑋𝑖1 , … , 𝑋𝑖𝑑)
𝑇 and personal best position 𝑝𝑏𝑒𝑠𝑡𝑖 =

(𝑝𝑏𝑒𝑠𝑡𝑖1 , … , 𝑝𝑏𝑒𝑠𝑡𝑖𝑑)
𝑇. Let, 𝑡 denote current iteration and 𝑔𝑏𝑒𝑠𝑡 denote its global best position

achieved so far by any of its particles. Initially, swarm is randomly dispersed within search

space and random velocity is assigned to each particle. Particles interact with one another by

sharing information to discover optimal solution. Each particle moves in the direction of its

personal best position (𝑝𝑏𝑒𝑠𝑡) and its global best position (𝑔𝑏𝑒𝑠𝑡). To search optimal solution,

each particle changes its velocity according to the cognitive and social parts given by:

𝑉𝑖𝑗(𝑡 + 1) = 𝑤(𝑡)𝑉𝑖𝑗(𝑡) + 𝑐1𝑅1[𝑝𝑏𝑒𝑠𝑡𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)] + 𝑐2𝑅2[𝑔𝑏𝑒𝑠𝑡𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)]

Where, 𝑖 = 1,2, … ,𝑀 and 𝑗 = 1,2, … , 𝑑 . However, in case of swarm explosion effect,

corresponding velocity component is restricted to following closest velocity bound:

𝑉𝑖𝑗(𝑡 + 1) = −𝑉𝑚𝑎𝑥 if 𝑉𝑖𝑗(𝑡 + 1) < −𝑉𝑚𝑎𝑥

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 271 -

 = 𝑉𝑚𝑎𝑥 If, 𝑉𝑖𝑗(𝑡 + 1) > 𝑉𝑚𝑎𝑥

After updating its velocity, each particle moves to a new potential solution by updating its

position as follows

𝑋𝑖𝑗(𝑡 + 1) = 𝑋𝑚𝑖𝑛 if 𝑋𝑖𝑗(𝑡 + 1) < 𝑋𝑚𝑖𝑛

 = 𝑋𝑖𝑗(𝑡)+𝛽𝑉𝑖𝑗(𝑡 + 1) , if 𝑋𝑚𝑖𝑛 ≤ 𝑋𝑖𝑗(𝑡 + 1) ≤ 𝑋𝑚𝑎𝑥

 = 𝑋𝑚𝑎𝑥, if 𝑋𝑖𝑗(𝑡 + 1) > 𝑋𝑚𝑎𝑥

Where, 𝑖 = 1,2, … ,𝑀 ; 𝑗 = 1,2, … , 𝑑 . In the above equations 𝑉𝑖𝑗 , 𝑋𝑖𝑗 and 𝑝𝑏𝑒𝑠𝑡𝑖𝑗 are

respectively velocity, current position and personal best position of particle 𝑖 on the

𝑗𝑡ℎdimension, and 𝑔𝑏𝑒𝑠𝑡𝑗 is the 𝑗𝑡ℎdimension global best position achieved so far among all

particles at iteration 𝑡. 𝑅1 and 𝑅2are random values, which are mutually independent and

uniformly distributed over [0,1], 𝛽 is a constraint factor used to control velocity weight, whose

value is usually set equal to 1. Positive constants 𝑐1 and 𝑐2 are usually called “acceleration

factors”. Factor 𝑐1 is sometimes referred to as “cognitive” parameter, while 𝑐1 is referred to

as “social” parameter. Inertia weight at iteration 𝑡 is 𝑤(𝑡) and is used to balance global

exploration and local exploitation. This can be determined by:

𝑤(𝑡) = 𝑤𝑢𝑝 − (𝑤𝑢𝑝 − 𝑤𝑙𝑜𝑤)𝑡/𝑇𝑚𝑎𝑥

Where,𝑡 is current iteration number, 𝑤𝑢𝑝 and 𝑤𝑙𝑜𝑤 are desirable lower and upper limits of 𝑤

and 𝑇𝑚𝑎𝑥 is maximum number of iterations.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 272 -

Fig.: Schematic diagram of particles' velocity.

Frame work of PSO:

Start

Initialize swarm with random position (X0) and Velocity

vectors (V0)

For each Particle

Evaluate Fitness Next Particle

IF fitness (Xt) > fitness (gbest)

gbest = Xt

Update Position

Xt+1=Xt+Vt+1

IF fitness (Xt) > fitness (pbest)

pbest = Xt

Update Velocity

𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑡)
+ 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑡)

TRUE

FALSE

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 273 -

Algorithm Implementation:

Step 1 involves the initialization of parameters where each particle is randomly assigned a

position and velocity within the defined search space. This random initialization helps ensure

that the entire solution space is explored effectively.

Step 2 requires evaluating each particle’s current position using a predefined fitness function.

This fitness value indicates how close a particle is to the optimal solution.

Step 3 is a comparison phase. First, the current fitness value of each particle is compared with

its personal best fitness value (pbest). If the current value is better, then pbest is updated.

Second, the fitness value of each particle is compared with the global best fitness value (gbest),

and if it outperforms the previous gbest, the global best is updated accordingly.

Step 4 updates each particle’s velocity and position. The update process is influenced by both

the particle’s personal experience (pbest) and the overall best experience of the swarm (gbest),

incorporating stochastic elements to enhance exploration.

Step 5 checks whether the stopping condition has been met. This condition may be reaching a

maximum number of iterations or achieving a desired fitness level. If not, the algorithm returns

to Step 2 for another iteration.

The core idea behind PSO is to guide each particle towards its own best-known position and

the best-known position found by the swarm, using a combination of deterministic and random

components. The position update rule is straightforward: the new position 𝑋𝑖+1is obtained by

adding the current velocity 𝑉𝑖 to the current position 𝑋𝑖, that is, 𝑋𝑖+1 = 𝑋𝑖 + 𝑉𝑖. After moving,

the particle re-evaluates its position, and if the new fitness value is better than its previous

personal best, it updates its pbest accordingly.

Psychosocial compromise:

Each particle updates its new position by compromising its local best towards the global best

as depicted schematically in the following diagram.

Terminate

End

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 274 -

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑠 𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑡) + 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑡)

User defined parameters:

Initial parameters such as swarm size, position of particles, velocity of particles and maximum

number of iterations; and control parameters such as swarm size, inertial weight, acceleration

coefficients C1 and C2 and number of iterations are very much important to begin with

optimization algorithm. One has to define them in such a way that obtained parameter error

should be less then target error.

Innertial weight (W):

A large inertia weight (W) facilitates a global search while a small inertia weight facilitates a

local search.

Acceleration coefficients:

An acceleration coefficient determines the inclination of search, greater the C1, greater will be

the global search ability, greater the C2, greater will be the local search ability.

X
gbest

pbest

Velocity

V

g- Proximity

Global Best

Position

attained

Particles best

Position so far

Particles

Current

Position

i-Proximity

Large W

Smaller W

Greater global

search ability

Greater local search

ability

C1>C2 Greater global

search ability

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 275 -

Pseudo code of PSO:

For each particle

{

 Initialize particle

}

Do until maximum iterations or minimum error criteria

{

 For each particle

 {

 Calculate Data fitness value

 If the fitness value is better than pBest

 {

 Set pBest = current fitness value

 }

 If pBest is better than gBest

 {

 Set gBest = pBest

 }

 }

 For each particle

 {

 Calculate particle Velocity

 Use gBest and Velocity to update particle Data

 }

 }

Pseudocode in mathematical representation:

C2>C1 Greater local search

ability

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 276 -

Numerical Example 1:

[Reference: Mohanty, P. (2018). NTPL online certification course on selected topics on

decision modelling, Particle Swarm Optimization, IIT Khargapur.
https://www.youtube.com/watch?v=uwXFnzWaCY0]

Consider a maximization problem for maximization of the function 𝑓(𝑥) = 1 + 2𝑥 − 𝑥2

Let us consider the control parameters W=0.70, C1=0.20, C2=0.60 and n=5 (Swarm particle).

Consider, random numbers used for updating velocity of particle be

r1 = [0.4657, 0.8956, 0.3877, 0.4902, 0.5039]

r2 = [0.5319, 0.8185, 0.8331, 0.7677, 0.1708]

Note: We keep the random numbers fixed for all the iterations throughout and each random

number is corresponding to each particle.

Initialization of swarm particles: We initialize fitness of all the particles as zeros;

https://www.youtube.com/watch?v=uwXFnzWaCY0

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 277 -

Current position of all the particles as;

Cp(0)=10*[r1-0.5]

Cp(0)=10*{[0.4657, 0.8956, 0.3877, 0.4902, 0.5039]-0.5}

So, Cp(0)=[-0.3425, 3.9558, -1.128, -0.0981, 0.0385]

Note: Multiplied by 10 to initialize at least some particles to be >1 and subtracted 0.5 sides to

generate both positive and negative random numbers.

Initialization of velocity:

V(0)=r2-0.5

V(0)={[0.5319, 0.8185, 0.8331, 0.7677, 0.1708]-0.5}

We get,

V(0)=[0.0319, 0.3185, 0.3331, 0.2677, -0.3292]

Note: one should see that velocity should not be too high or too low.

Current position and current fitness:

Iteration 1:

Current position (Cp) of each particle is what we initialize

Cp(1)= Cp(0)= [-0.3425, 3.9558, -1.128, -0.0981, 0.0385]

Current velocity V(1)=V(0)

 =[0.0319, 0.3185, 0.3331, 0.2677, -0.3292]

Current fitness CF(1)= 𝑓(𝐶𝑝(1)) = 1 + 2𝐶𝑝(1) − 𝐶𝑝(1)2

 = [0.1976, -6.7368, -2.5061, 0.7942, 1.0755]

Note: 𝐶𝑝(1)2 is obtained by squaring individual elements of Cp(1). As of now, we obtained

current velocity, current position and current fitness.

Local best position (LBP)of each particle up to first iteration is just its current position.

LBP(1)=Cp(1)=[-0.3425, 3.9558, -1.128, -0.0981, 0.0385]

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 278 -

Local Best fitness of each particle up to iteration 1=current fitness of iteration 1

Local Best Fitness (LBF)

LBF(1)=CF(1)=[0.1976, -6.7368, -2.5061, 0.7942, 1.0755]

Global Best Fitness of iteration 1= Max (LBF(1));

GBF(1)=1.0755 → for 5th particle

Global Best Position of iteration 1

GBP(1)=Corresponding current position of 5th particle in cp(1)

 =0.0385

Velocity of iteration 2

Velocity for next iteration

 𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝐿𝐵𝑃(𝑖) − 𝐶𝑝(𝑖)) + 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝐺𝐵𝑃(𝑖) − 𝐶𝑝(𝑖))
We have from iteration 1

V(1)=[0.0319, 0.3185, 0.03331, 0.2677, -0.3292]

For 1st particle: r1=0.4657 ,r2=0.5319, CP(1)=-0.3425, LBP(1)=-0.3425 and GBP(1)=0.0385

So, for the iteration 2, for the particle 1st: 𝑉2 = 0.7𝑉(1) + 0.2 ∗ 𝑟𝑎𝑛𝑑(0,1)(𝐿𝐵𝑃(𝑖) −

𝐶𝑝(𝑖)) + 0.6 ∗ 𝑟𝑎𝑛𝑑(0,1)(𝐺𝐵𝑃(𝑖) − 𝐶𝑝(𝑖)) =0.1439

Thus we have for iteration 2

V(2)=[0.1439, -1.7008, 0.8136, 0.2503, -0.2304]

Current position and current fitness

Current position for next iteration

𝐶𝑝(𝑖 + 1) = 𝑐𝑝(𝑖) + 𝑉(𝑖 + 1)

WKT,

CP(1)=[-0.3425, 3.9558, -1.1228, -0.0981, 0.0385] & V(2)=[0.1439, -1.7008, 0.8136,

0.2503, -0.2304]

Hence, CP(2)=[-0.1986, 2.2550, -0.3092, 0.1522, -0.1919]

Current fitness for next iteration

CF(i)= 𝑓(𝐶𝑝(𝑖)) = 1 + 2𝐶𝑝(𝑖) − 𝐶𝑝(𝑖)2

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 279 -

Hence, CF(2)=[0.5634, 0.4250, 0.2860, 1.2812, 0.5794]

We know that Local Best Fitness is LBF(1)=[0.1976, -6.7368, -2.5061, 0.7942, 1.0755]

Hence,

LBF(2)=Max[CF(2), LBF(1)] = [0.5634,0.4250, 0.2860, 1.2812, 1.0755]

Local Best & Global Best

We have for iteration 2:

CP(2)=[-0.1986, 2.2550, -0.3092, 0.1522, -0.1919] and LBF(2)= [0.5634,0.4250, 0.2860,

1.2812, 1.0755]

Hence Global Best Fitness in iteration 2,

GBF(2)= Max(LBF(2))=1.2812

So, Global Best Position in iteration 2, GBP(2)= 0.1522(4th particle position in CP(2))

Local Best Position of each particle in iteration 2

CP(1)=[-0.3425, 3.9558, -1.1228, -0.0981, 0.0385] and LBF(1)=[0.1976, 0.4250, 0.2860,

1.2816, 0.5794]

So, LBP(2)= position w.r.t. LBF(2)=[-0.1976, 2.2550, -0.3092, 0.1522, 0.0385]

Current position is best for first 4 particle, but not for 5th last one is better

Summary: Iteration 1 & 2

Iteration V(i) & CP (i) CF(i) & LBF (i) GBF(i) LBP(i) & GBP(i)

1 V(1)=[0.0319, 0.3185,

0.03331, 0.2677, -

0.3292]

CP(1)=[-0.3425,

3.9558, -1.1228, -

0.0981, 0.0385]

CF(1)=[0.1976, -

6.7368, -2.5061,

0.7942, 1.0755]

LBF(1)=[0.1976, -

6.7368, -2.5061,

0.7942, 1.0755]

GBF(1)

=1.0755

LBP(1)=[-

0.3425, 3.9558, -

1.1228, -0.0981,

0.0385]

GBF(1)=0.0385

2 V(2)=[0.1439, -1.7008,

0.8136, 0.2503, -

0.2304]

CP(2)=[-0.1986,

2.2550, -0.3092,

0.1522, -0.1919]

CF(2)=

[0.5634,0.4250,

0.2860, 1.2812,

0.5794]

LBF(2)=

[0.5634,0.4250,

GBF(2)

=1.2812

LBP(2)=[-

0.1986, 2.2550, -

0.3092, 0.1522,

0.0385]

GBP(2)=0.1522

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 280 -

 0.2860, 1.2812,

1.0755]

Summary: Iteration 3 & 4

3 V(3)=[0.02127,

-2.2232,

0.8001, 0.1752,

-0.1120]

CP(3)=[0.0141,

0.0318, 0.4909,

0.3274, -

0.2944]

CF(3)=[1.0279,1.0625,1.7410,

1.5464, 0.3246]

LBF(3)=[1.0279, 1.0625,

1.7410, 1.5464, 1.0755]

GBF(3)=1.7410 LBP(3)=[0.0141,

0.0318, 0.4909,

0.3274, 0.0385]

GBP(3)=0.4909

4 V(4)=[0.3011,

-1.3308,

0.5601, 0.1980,

0.0420]

CP(4)=[0.3152,

-1.2990,

1.0510, 0.5254,

-0.2523]

CF(4)=[1.5312, -3.2861,

1.9974, 1.7740, 0.4317]

LBF(4)=[1.5312, 1.0625,

1.9974, 1.7740, 1.0755]

GBF(4)=1.9974

(Best fitness)

LBP(4)=[0.3152,

0.0318, 1.0510,

0.5254, 0.0385]

GBP(4)=1.0510

(Best position)

𝑉𝑡+1 = 𝑊𝑉𝑡 + 𝐶1𝑟𝑎𝑛𝑑(0,1)(𝑝𝑏𝑒𝑠𝑡 − 𝑋𝑡) + 𝐶2𝑟𝑎𝑛𝑑(0,1)(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑡)

𝐶𝑝(𝑖 + 1) = 𝑐𝑝(𝑖) + 𝑉(𝑖 + 1)

𝐿𝐵𝐹(𝑖 + 1) = 𝑀𝑎𝑥[𝐶𝐹(𝑖 + 1), 𝐿𝐵𝐹(𝑖)]

𝐺𝐵𝐹(𝑖) = 𝑀𝑎𝑥[𝐿𝐵𝐹(𝑖)]

Final solution:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 281 -

From iteration 4, we have, Global Best Position GBP(4)=1.0510 & Global Best Fitness

GBF(4)=1.9974 Hence the final solution obtained as x*=1.0510 and f(x*)=1.9974 .

Numerical Example 2 – Robust Regression with Particle Swarm Optimisation

[Reference: Enrico Schumann. Robust Regression with Particle Swarm Optimisation. https://cran.r-

project.org/web/packages/NMOF/vignettes/PSlms.pdf]

#R code for – Robust Regression with Particle Swarm Optimisation

install.packages("NMOF")

install.packages("MASS")

library("NMOF")

library("MASS")

set.seed(11223344)

createData <- function(n, p, constant = TRUE,

 sigma = 2, oFrac = 0.1) {

 X <- array(rnorm(n * p), dim = c(n, p))

 if (constant)

 X[, 1L] <- 1L

 b <- rnorm(p)

 y <- X %*% b + rnorm(n)*0.5

 nO <- ceiling(oFrac*n)

 when <- sample.int(n, nO)

 X[when, -1L] <- X[when, -1L] + rnorm(nO, sd = sigma)

 list(X = X, y = y, outliers = when)

}

n <- 100L ## number of observations

https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 282 -

p <- 10L ## number of regressors

constant <- TRUE; sigma <- 5; oFrac <- 0.1

h <- 75L ## ... or use something like floor((n+1)/2)

aux <- createData(n, p, constant, sigma, oFrac)

X <- aux$X; y <- aux$y

Data <- list(y = as.vector(y), X = X, h = h)

plot(Data)

plot(X,y)

plot(y, type="l")

par(bty = "n", las = 1, tck = 0.01, mar = c(4,4,1,1))

plot(X[,2L], type = "h", ylab = "X values", xlab = "observation")

lines(aux$outliers, X[aux$outliers ,2L], type = "p", pch = 21,

 col = "blue", bg = "blue")

OF <- function(param, Data) {

 X <- Data$X; y <- Data$y

 aux <- y - X %*% param

 aux <- aux * aux

 aux <- apply(aux, 2L, sort, partial = Data$h)

 colSums(aux[1:Data$h,]) ## LTS

}

popsize <- 100L; generations <- 500L

ps <- list(min = rep(-10,p),

 max = rep(10,p),

 c1 = 0.9,

 c2 = 0.9,

 iner = 0.9,

 initV = 1,

 nP = popsize,

 nG = generations,

 maxV = 5,

 loopOF = FALSE,

 printBar = FALSE,

 printDetail = FALSE)

system.time(solPS <- PSopt(OF = OF, algo = ps, Data = Data))

solPS <- PSopt(OF = OF, algo = ps, Data = Data)

solPS

Suggested Readings:

• Dai, H.-P.; Chen, D.-D.; Zheng, Z.-S. Effects of Random Values for Particle Swarm

Optimization Algorithm. Algorithms 2018, 11, 23. https://www.mdpi.com/1999-

4893/11/2/23

• Enrico Schumann. Robust Regression with Particle Swarm Optimisation. https://cran.r-

project.org/web/packages/NMOF/vignettes/PSlms.pdf]

• Gilli, M., D. Maringer and E. Schumann. (2011). Numerical Methods and

Optimization in Finance. Elsevier.

https://www.mdpi.com/1999-4893/11/2/23
https://www.mdpi.com/1999-4893/11/2/23
https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
https://cran.r-project.org/web/packages/NMOF/vignettes/PSlms.pdf
http://www.elsevierdirect.com/ISBN/9780123756626/Numerical-Methods-and-Optimization-in-Finance
http://www.elsevierdirect.com/ISBN/9780123756626/Numerical-Methods-and-Optimization-in-Finance

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 283 -

• J. Kennedy, The particle swarm: social adaptation of knowledge, IEEE International

Conference on Evolutionary Computation, 1997Indianapolis, IN.

https://ieeexplore.ieee.org/document/592326

• Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical Methods and

Optimization in Finance. Elsevier/Academic Press, 2011. URL

http://enricoschumann.net/NMOF

• Mohanty, P. (2018). NTPL online certification course on selected topics on decision

modelling, Particle Swarm Optimization, IIT Khargapur.

https://www.youtube.com/watch?v=uwXFnzWaCY0]

• Soumya D. Mohanty (2012). Particle Swarm Optimization and regression analysis – I,

Astronomical Review, 7:2, 29-35, DOI: 10.1080/21672857.2012.11519700.

https://ieeexplore.ieee.org/document/592326
http://enricoschumann.net/NMOF
https://www.youtube.com/watch?v=uwXFnzWaCY0

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 284 -

ML Optimization: Spider Monkey Optimization for Agriculture
Prof. Dharavath Ramesh

Department of Computer Science and Engineering, Indian Institute of Technology

Dhanbad

Email:drramesh@iitism.ac.in

1. Introduction

Agriculture is a vital sector that feeds the world's population, but it is increasingly under

pressure from climate change, limited resources, and the need for sustainable practices.

Traditional farming methods often struggle to efficiently allocate resources like water,

fertilizers, and labor. Therefore, advanced computational approaches are needed to make

agriculture smarter and more resilient. Among nature-inspired metaheuristic techniques, the

Spider Monkey Optimization (SMO) algorithm has emerged as a flexible, adaptive method for

tackling complex optimization tasks in agriculture. This document demonstrates how SMO can

be practically applied to real-world agricultural scenarios, supporting farmers and

policymakers in decision-making processes.

Agriculture faces numerous challenges in the modern world, including increasing productivity,

optimizing resource usage, and ensuring sustainability. To address these issues, nature-inspired

optimization algorithms have become popular due to their efficiency in solving complex

problems. One such algorithm is the Spider Monkey Optimization (SMO) algorithm, inspired

by the social behavior of spider monkeys. This document explores how SMO can be applied

in agriculture through a detailed case study.

2. What is Spider Monkey Optimization (SMO)?

Spider Monkey Optimization is a swarm intelligence-based algorithm inspired by the

fission-fusion social structure of spider monkeys. Spider monkeys dynamically split and merge

their groups to forage for food efficiently. This behavior is modeled mathematically to solve

complex optimization problems by searching large solution spaces effectively.

Spider Monkey Optimization (SMO) is a stochastic technique based on the social

behavior of spider monkeys. This methodology provides a fascinating research opportunity in

the field of optimization. The algorithm imitates the foraging behavior of spider monkeys that

has been identified as a Fission-Fusion Social Structure (FFSS) based animal. SMO is similar

to other population-based algorithms where each SM represents a potential solution for the

considered problem. The working of SMO consists of four steps. Initially, in the first step, the

group of spider monkeys starts food foraging and analyzes the distance from the food. Second,

the group member updates their position based on the distance from the food and again

evaluates the distance from food. Third, the local leader updates its best position within the

group. If the best position is not updated within the defined threshold value, then all the

members of the local groups start food foraging in other directions. In the last step, the ever-

best position of the global leader is updated.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 285 -

Furthermore, the group splits into smaller size subgroup to avoid stagnation. All these

aforementioned steps are repeated several times until the desired result is achieved. SMO

introduces two important control variables named LocalLeaderLimit (LLL) and

GlobalLeaderLimit(GLL) to avoid stagnation in the local leader and the global leader phase.

SMO is inspired by the intelligent foraging behavior of animals and follows the principle of

division of labor property and self-organization. Modelling the SMO problem for workflow

scheduling is a two-step process. The First step involves the identification of search space and

the representation of the solution, i.e., how the defined problem is encoded. The second step

defines the fitness function which is used to measure the quality of the solution.

In order to define the encoding of a solution, it is required to initialize the population of

spider monkeys randomly. Afterwards, in each iteration, the fitness value of each spider

monkey is evaluated using fitness function defined as optimization and scheduling constraints.

Spider monkey repeatedly updates their position based on the LocalLeader, Local group

members, and GlobalLeader experience to achieve the best fitness value. These steps are

repeated until the algorithm attains the desired output.

Key Features:

- Decentralized decision-making.

- Dynamic grouping and regrouping.

- Balance between exploration and exploitation.

- Pest control strategy optimization.

- Yield prediction models.

3. SMO Algorithm Steps

✓ Initialization: Define population size, group size, and objective function.

✓ Local Leader Phase: Individuals follow their local leader to exploit the search space.

✓ Global Leader Phase: Groups are influenced by a global leader to explore new areas.

✓ Local Leader Learning Phase: Local leaders are updated based on the group's

performance.

✓ Global Leader Learning Phase: Global leader changes if needed.

✓ Decision to Split or Merge: Groups split or merge based on performance and diversity.

(i) Initialization:

• Initialize population of spider monkeys (possible solutions).

• Set parameters:

• Number of groups,

• Number of spider monkeys per group,

• Maximum number of iterations,

• Probability of local leader and global leader learning.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 286 -

(ii) Fitness Evaluation:

• Evaluate each spider monkey’s position using the objective function (e.g., prediction

error for crop yield).

(iii) Identify Leaders:

• Global Leader: The spider monkey with the best fitness in the whole population.

Local Leaders: The best monkey in each group.

(iv) Update Position:

(v) Local Leader Phase:

• If a group doesn’t improve for a set number of iterations, reinitialize that group’s

members or make them explore new areas.

(vi) Global Leader Phase:

• If the global leader doesn’t improve for a set number of iterations, increase the number

of groups (fission) to enhance exploration.

(vii) Merge (fusion):

• If exploration stagnates or the maximum number of groups is reached, groups may

merge to share information.

(viii) Termination:

• Repeat steps ii–vii until:

• Maximum iterations reached, or

• Desired fitness achieved.

SMO Process Flow:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 287 -

SMO Social Structure:

4. Case Study: SMO for Crop Yield Prediction

Problem Statement: Predict wheat yield based on:

• Rainfall,

• Temperature,

• Soil moisture,

• Fertilizer use.

Objective: Minimize prediction error.

Step-by-Step Explanation

Initialization:

• Suppose we have 30 spider monkeys (solutions).

• Each monkey represents a possible set of model parameters for a regression model

(like SVR, ANN, or even coefficients in a custom yield model).

 Fitness Function:

• Use Mean Squared Error (MSE) between actual and predicted yield.

Leaders:

• Identify the monkey with the lowest MSE globally and the best in each subgroup.

Update:

• Each monkey adjusts its model parameters based on leaders.

earning Phases:

• If a local leader’s group doesn’t improve, its members search wider.

• If the global best stagnates, new groups split off to explore different parameter

regions.

Stopping:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 288 -

• Stop if the minimum MSE is acceptable or after, say, 200 iterations.

Result:

The best monkey’s parameters are used to make accurate crop yield predictions.

Key Benefit

SMO adaptively balances exploration (global search) and exploitation (local refinement),

making it well-suited for optimizing complex, nonlinear models like those used in precision

agriculture.

SMO Flowchart:

Numerical Example:

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 289 -

Example:

• Monkey A: [0.02, 0.05, 0.03, 0.5]

• Predicted Y = 0.02×50 + 0.05×25 + 0.03×30 + 0.5

 = 1.0 + 1.25 + 0.9 + 0.5 = 3.65

MSE = (3.0 – 3.65)² = 0.4225

Each monkey represents different weights → best one has the lowest MSE.

Simple Python code snippet:

import numpy as np

Initialize

num_monkeys = 10

num_params = 4 # w1, w2, w3, b

max_iter = 50

Example input and output

X = np.array([50, 25, 30])

Y_actual = 3.0

Initialize monkey population randomly

population = np.random.uniform(-1, 1, (num_monkeys, num_params))

Fitness function: MSE

def fitness(monkey):

 Y_pred = np.dot(monkey[:3], X) + monkey[3]

 return (Y_actual - Y_pred) ** 2

for iteration in range(max_iter):

 fitness_vals = np.array([fitness(m) for m in population])

 global_leader = population[np.argmin(fitness_vals)]

 for i in range(num_monkeys):

 r1, r2 = np.random.rand(), np.random.rand()

 population[i] += r1 * (global_leader - np.abs(population[i]))

 # Optional: Local leader logic can be added here

best_monkey = population[np.argmin([fitness(m) for m in population])]

print("Best weights found:", best_monkey)

5. Advantages of Using SMO in Agriculture

- Can adapt to real-time data inputs.

- Handles uncertainty in environmental parameters.

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 290 -

- Reduces operational costs by optimizing inputs.

- Improves sustainability and resource management.

Spider Monkey Optimization (SMO) offers several distinct advantages when applied to

agriculture. Its nature-inspired design makes it highly effective for handling complex, nonlinear

agricultural problems where multiple factors such as soil conditions, weather, pests, and crop

genetics interact dynamically. The unique fission-fusion social structure of SMO enables an

adaptive balance between exploration and exploitation, helping it avoid local optima and find

better solutions for tasks like crop yield prediction, irrigation scheduling, fertilizer application,

and precision pest management. SMO can be easily integrated with data-driven models,

including machine learning frameworks, making it suitable for optimizing parameters in

predictive analytics and decision-support systems in smart farming. Its scalability allows it to

handle large datasets from IoT sensors and remote sensing technologies, which are increasingly

common in modern precision agriculture. Moreover, SMO is robust against uncertainties such

as unpredictable weather or market fluctuations, thanks to its collective learning behavior that

mimics real-life social decision-making. Lastly, SMO is relatively easy to implement and

adapt, and can be hybridized with other metaheuristic techniques like Particle Swarm

Optimization (PSO) or Genetic Algorithms (GA) to enhance its performance for specific

agricultural applications.

6. Challenges and Future Scope

While Spider Monkey Optimization (SMO) shows great promise for diverse agricultural

applications, its practical deployment also faces certain challenges. One key challenge is the

need for high-quality, real-time agricultural data, as inaccurate or sparse data can limit the

algorithm’s effectiveness and lead to unreliable predictions or suboptimal decisions.

Additionally, fine-tuning SMO’s parameters — such as group sizes, learning probabilities, and

stopping criteria — can be complex and may require domain expertise to adapt the algorithm

to different crops, regions, and seasons. Computational cost can be significant for large-scale

problems, especially when SMO is combined with high-dimensional models or real-time IoT

sensor networks. Another challenge lies in the interpretability of the solutions; farmers and

stakeholders may find it difficult to trust black-box optimization outputs without clear

explanations or user-friendly interfaces.

Despite these challenges, the future scope for SMO in agriculture is highly encouraging.

Advances in precision agriculture, remote sensing, and IoT are creating rich, real-time data

streams that can feed SMO-driven decision systems, improving their accuracy and adaptability.

Hybrid approaches that combine SMO with other metaheuristic algorithms, machine learning

models, or domain-specific constraints could deliver even better performance and robustness.

Integration with digital twins of farms, climate-smart farming systems, and autonomous

machinery is another promising direction, enabling SMO to optimize dynamic operations in

real time. Furthermore, user-friendly decision support tools, mobile applications, and cloud-

based platforms can help translate SMO’s complex computations into actionable insights for

farmers and policymakers. Continued research into explainable optimization, scalable

Training Manual │ Twenty-One Days Online Training Program on "Advanced Statistical & Machine Learning Techniques for Data
Analysis Using Open Source Software for Abiotic Stress Management in Agriculture” (16 July- 05 August 2025)

- 291 -

implementations, and cross-disciplinary collaboration will be key to unlocking SMO’s full

potential in achieving sustainable, data-driven agriculture.

7. Conclusion

In summary, Spider Monkey Optimization (SMO) stands out as a promising nature-

inspired metaheuristic algorithm for addressing the multifaceted challenges of modern

agriculture. By mimicking the adaptive and cooperative social behavior of spider monkeys,

SMO effectively balances global exploration and local exploitation, making it highly suitable

for solving complex, nonlinear problems such as crop yield prediction, irrigation scheduling,

and resource optimization. Its ability to integrate with machine learning models and process

large volumes of data from IoT and remote sensing technologies positions it as a valuable tool

for smart, data-driven farming practices.

However, successful implementation of SMO in agricultural contexts also depends on

overcoming practical challenges such as data availability, parameter tuning complexity,

computational demands, and the interpretability of results for end-users. Addressing these

challenges through hybrid algorithm designs, user-friendly decision-support systems, and

scalable digital infrastructure can unlock SMO’s full potential.

Looking ahead, the integration of SMO with emerging technologies like digital twins,

autonomous farming equipment, and explainable AI offers exciting opportunities to enhance

sustainability, resilience, and efficiency in agriculture. With continued research, collaboration,

and technological advancements, Spider Monkey Optimization could play a significant role in

shaping the future of precision and climate-smart farming, ultimately contributing to global

food security and sustainable development goals.

--

"It is better to live your own destiny imperfectly than to live an imitation of

somebody else's life with perfection.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 3

